Archive

Archive for the ‘Star & Solar System Formation’ Category

Astronomers Observe Distant Galaxy Powered By Primordial Cosmic Fuel

October 4, 2013 Leave a comment

CREDIT: MPIA (G. STINSON / A. V. MACCIÒ)

CREDIT: MPIA (G. STINSON / A. V. MACCIÒ)

Astronomers have detected cold streams of primordial hydrogen, vestigial matter left over from the Big Bang, fueling a distant star-forming galaxy in the early Universe. Profuse flows of gas onto galaxies are believed to be crucial for explaining an era 10 billion years ago, when galaxies were copiously forming stars. To make this discovery, the astronomers – led by Neil Crighton of the Max Planck Institute for Astronomy and Swinburne University – made use of a cosmic coincidence: a bright, distant quasar acting as a “cosmic lighthouse” illuminates the gas flow from behind. The results were published October 2 in the Astrophysical Journal Letters.

The systematic survey of absorption systems comprises observations with the Large Binocular Telescope and from data taken with the W. M. Keck Observatory’s HIRES echelle spectrograph installed on the 10 meter Keck I telescope on the summit of Mauna Kea, Hawaii. The foreground galaxy was discovered by Charles Steidel, Gwen Rudie (California Institute of Technology) and collaborators using the Keck Observatory’s LRIS spectrograph on the same telescope.

Link To Full Story.

New Theory Points To ‘Zombie Vortices’ As Key Step In Star Formation

August 21, 2013 Leave a comment

Artist conception. Image courtesy of NASA/JPL-Caltech

Artist conception. Image courtesy of NASA/JPL-Caltech

A new theory by fluid dynamics experts at the University of California, Berkeley, shows how “zombie vortices” help lead to the birth of a new star.

Reporting today (Tuesday, Aug. 20) in the journal Physical Review Letters, a team led by computational physicist Philip Marcus shows how variations in gas density lead to instability, which then generates the whirlpool-like vortices needed for stars to form.

Astronomers accept that in the first steps of a new star’s birth, dense clouds of gas collapse into clumps that, with the aid of angular momentum, spin into one or more Frisbee-like disks where a protostar starts to form. But for the protostar to grow bigger, the spinning disk needs to lose some of its angular momentum so that the gas can slow down and spiral inward onto the protostar. Once the protostar gains enough mass, it can kick off nuclear fusion.

Full Story: http://newscenter.berkeley.edu/2013/08/20/zombie-vortices-key-step-in-star-formation/

ALMA Takes Close Look At Drama Of Starbirth

August 21, 2013 Leave a comment

Credit: ESO / ALMA (ESO / NAOJ / NRAO) / H. Arce. Acknowledgements: Bo Reipurth

Credit: ESO / ALMA (ESO / NAOJ / NRAO) / H. Arce. Acknowledgements: Bo Reipurth

Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have obtained a vivid close-up view of material streaming away from a newborn star. By looking at the glow coming from carbon monoxide molecules in an object called Herbig-Haro 46/47 they have discovered that its jets are even more energetic than previously thought. The very detailed new images have also revealed a previously unknown jet pointing in a totally different direction.

Young stars are violent objects that eject material at speeds as high as one million kilometres per hour. When this material crashes into the surrounding gas it glows, creating a Herbig-Haro object. A spectacular example is named Herbig-Haro 46/47 and is situated about 1400 light-years from Earth in the southern constellation of Vela (The Sails). This object was the target of a study using ALMA during the Early Science phase, whilst the telescope was still under construction and well before the array was completed.

The new images reveal fine detail in two jets, one coming towards Earth and one moving away. The receding jet was almost invisible in earlier pictures made in visible light, due to obscuration by the dust clouds surrounding the new-born star. ALMA has not only provided much sharper images than earlier facilities but also allowed astronomers to measure how fast the glowing material is moving through space.

Full Story: http://www.eso.org/public/news/eso1336/
Also: http://news.yale.edu/2013/08/20/they-form-stars-shape-their-womb-within

Solar System’s Youth Gives Clues To Planet Search


Disk isotopes modeling results. Image courtesy of Alan Boss

Disk isotopes modeling results. Image courtesy of Alan Boss

Comets and meteorites contain clues to our solar system’s earliest days. But some of the findings are puzzle pieces that don’t seem to fit well together. A new set of theoretical models from Carnegie’s Alan Boss shows how an outburst event in the Sun’s formative years could explain some of this disparate evidence. His work could have implications for the hunt for habitable planets outside of our solar system. It is published by The Astrophysical Journal.

One way to study the solar system’s formative period is to look for samples of small crystalline particles that were formed at high temperatures but now exist in icy comets. Another is to analyze the traces of isotopes—versions of elements with the same number of protons, but a different number of neutrons—found in primitive meteorites. These isotopes decay and turn into different, so-called daughter, elements. The initial abundances of these isotopes tell researchers where the isotopes may have come from, and can give clues as to how they traveled around the early solar system.

Stars are surrounded by disks of rotating gas during the early stages of their lives. Observations of young stars that still have these gas disks demonstrate that sun-like stars undergo periodic bursts, lasting about 100 years each, during which mass is transferred from the disk to the young star.

Full Story: https://carnegiescience.edu/news/solar_system%E2%80%99s_youth_gives_clues_planet_search

Two Suns Are Probably Better Than One, Or Not?


An International Collaboration of FACom researchers and Astronomers of the University of Texas (El Paso) and New Mexico State University, have discovered a physical mechanism that could make binary stars more hospitable to habitable planets than single stars. The discovery could imply a modification in the estimations of the number of planets potentially harboring life in the Galaxy and in the future selection of targets for the search of life elsewhere.

Habitability is the term astronomers use for referring to the general condition a planet must fulfill in order to be suitable for life. It has been customary to think that habitability is determined mainly by the amount of light a planet receives from its host star. If the planet receives too much light it is too hot and water will be boiling in its atmosphere (if it has one!). On the other hand, if the planet is too far and light from the star shines weakly, the surface is too cold and water becomes frozen. In the middle between these extremes lies the so called “radiative habitable zone” also nicknamed the “Goldilocks Zone”.

But planets in the Goldilocks Zone need to meet other conditions to be considered actually habitable. One of the most important is having a dense and wet atmosphere where heat could be trapped and water could condensate at the surface. But preseving an atmosphere is a real challenge for a young planet.

Full Story: http://urania.udea.edu.co/sitios/facom/press.php?

Snow Falling around Infant Solar System: Icy Region Gives Planet And Comet Formation A Boost


ALMA image of CO snow line. Credit: Karin Oberg, Harvard/University of Virginia

ALMA image of CO snow line. Credit: Karin Oberg, Harvard/University of Virginia

The sight of a snowfall can thrill children, but the first-ever snow line seen around a distant star gives astronomers an even greater thrill because of what it reveals about the formation of planets and our Solar System’s history.

Astronomers using the new Atacama Large Millimeter/submillimeter Array (ALMA) telescope have taken the first-ever image of a snow line in an infant solar system. This frosty landmark is thought to play an essential role in the formation and chemical make-up of planets around a young star.

On Earth, snow lines typically form at high elevations where falling temperatures turn atmospheric moisture to snow. In much the same way, snow lines are thought to form around young stars in the distant, colder reaches of the disks from which solar systems form. Depending on the distance from the star, however, other more exotic molecules can freeze and turn to snow.

“ALMA has given us the first real picture of a snow line around a young star, which is extremely exciting because of what it tells us about the very early period in the history of our own Solar System,” said Chunhua “Charlie” Qi, a researcher with the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., who led the international research team with Karin Oberg, a researcher with Harvard University and the University of Virginia in Charlottesville.

Full Story:  http://www.nrao.edu/pr/2013/snowline/
Also: http://www.eso.org/public/news/eso1333/

Astronomers Witness Birth Of Milky Way’s Most Massive Star


The team used the new ALMA (Atacama Large Millimetre/submillimetre Array) telescope in Chile – the most powerful radio telescope in the world – to view the stellar womb which, at 500 times the mass of the Sun and many times more luminous, is the largest ever seen in our galaxy.

The researchers say their observations – to be published in the journal Astronomy and Astrophysics – reveal how matter is being dragged into the centre of the huge gaseous cloud by the gravitational pull of the forming star – or stars – along a number of dense threads or filaments.

“The remarkable observations from ALMA allowed us to get the first really in-depth look at what was going on within this cloud,” said lead author Dr Nicolas Peretto, from Cardiff University. “We wanted to see how monster stars form and grow, and we certainly achieved our aim. One of the sources we have found is an absolute giant — the largest protostellar core ever spotted in the Milky Way!

“Even though we already believed that the region was a good candidate for being a massive star-forming cloud, we were not expecting to find such a massive embryonic star at its centre. This cloud is expected to form at least one star 100 times more massive than the Sun and up to a million times brighter. Only about one in 10,000 of all the stars in the Milky Way reach that kind of mass.”

Full Story: http://www.manchester.ac.uk/aboutus/news/display/?id=10369

Cosmic Dust Belts Without Dust


Planets and asteroids, red giants and brown dwarfs – there are all kinds of objects in our Universe. Debris disks are among them. These are belts consisting of countless dust particles and planetesimals, circling around one central star. “At least one fifth of stars are surrounded by dust belts like these,” Prof. Dr. Alexander Krivov from the Friedrich-Schiller-University Jena explains. “They are the remains of the formation of planets, in which the unused, building materials are collected,” the astrophysicist points out. Therefore debris disks are an important piece in the puzzle to be able to better understand the variety of planetary systems.

For astronomers like Alexander Krivov debris disks are actually nothing new. Our sun is also orbited by such dust belts: the Asteroid Belt and the Kuiper Belt with Pluto being perhaps the most well-known object in it. However, the Jena astrophysicist, accompanied by an international team of scientists, has observed six stars similar to the sun with extraordinary dust belts: The newly discovered debris disks are not only bigger than the Kuiper Belt. Above all they are extremely cold. With a temperature of about minus 250 °C they are the coldest debris disks known so far. The scientists report on it in the science journal ‘The Astrophysical Journal’, which is already online and will be available in a print version from 20 July. “We were surprised that such cold debris disks exist at all,” Alexander Krivov, the lead author of the new study, says. By way of comparison: The Kuiper Belt is about 70 °C degree warmer, some of the dust disks even reach room temperature.

Full Story: http://www.uni-jena.de/en/News/PM130708_krivov_debris_disks.html

Sunny Super-Earth?


A research team led by Akihiko Fukui (NAOJ), Norio Narita (NAOJ) and Kenji Kuroda (the University of Tokyo) observed the atmosphere of super-Earth “GJ3470b” in Cancer for the first time in the world using two telescopes at OAO (Okayama Astrophysical Observatory, NAOJ). This super-Earth is an exoplanet, having only about 14 times the mass of our home planet, and it is the second lightest one among already-surveyed exoplanets. The observational data revealed that this planet is highly likely to NOT be covered by thick clouds.

The researchers expect that future detection of the specific composition of the planet’s atmosphere based on highly accurate observations with larger aperture telescopes, such as the Subaru Telescope. This planet orbits around its primary star very closely at a rapid rate. We don’t yet understand the formation process of such planets. If future detailed observations of the atmosphere detect any substance that becomes ice at low temperatures, it probably means that this planet was originally formed at a distance (a few astronomical units) from the primary star, where ice could exist, and moved toward the primary star thereafter. In contrast, if such a substance cannot be found in the atmosphere, this planet was quite likely formed at its present location (near the primary star) from its early stage. Thus, it is expected that the detailed observations of the atmosphere of GJ3470b can begin to reveal the mysteries behind the formation of super-Earths.

Full Story: http://www.nao.ac.jp/en/news/science/2013/20130612-oao-gj3470b.html

New Observations Of A “Dust Trap” Around A young Star Solve Long-Standing Planet Formation Mystery


ALMA image of dust trap around Oph IRS 48. Credit: ALMA (ESO/NAOJ/NRAO) / Nienke van der Marel

ALMA image of dust trap around Oph IRS 48. Credit: ALMA (ESO/NAOJ/NRAO) / Nienke van der Marel

Astronomers now know that planets around other stars are plentiful. But they do not fully understand how they form and there are many aspects of the formation of comets, planets and other rocky bodies that remain a mystery. However, new observations exploiting the power of ALMA are now answering one of the biggest questions: how do tiny grains of dust in the disc around a young star grow bigger and bigger — to eventually become rubble, and even boulders well beyond a metre in size?

Computer models suggest that dust grains grow when they collide and stick together. However, when these bigger grains collide again at high speed they are often smashed to pieces and sent back to square one. Even when this does not happen, the models show that the larger grains would quickly move inwards because of friction between the dust and gas and fall onto their parent star, leaving no chance that they could grow even further.

Somehow the dust needs a safe haven where the particles can continue growing until they are big enough to survive on their own [1]. Such “dust traps” have been proposed, but there was no observational proof of their existence up to now.

Full Story: http://www.eso.org/public/news/eso1325/
Also: http://www.nrao.edu/pr/2013/dusttrap/

Follow

Get every new post delivered to your Inbox.

Join 373 other followers