Archive

Archive for the ‘Spaceflight’ Category

Beauty From Chaos


Copyright ESA/DLR/FU Berlin

Copyright ESA/DLR/FU Berlin

Beautiful streamlined islands and narrow gorges were carved by fast-flowing water pounding through a small, plateau region near the southeastern margin of the vast Vallis Marineris canyon system.

Images captured on 7 December 2013 by ESA’s Mars Express show the central portion of Osuga Valles, which has a total length of 164 km. It is some 170 km south of Eos Chaos, which lies in the far eastern section of Valles Marineris.

Osuga Valles is an outflow channel that emanates from a region of chaotic terrain at the edge of Eos Chaos to the west (top in the main images). Such landscape is dominated by randomly oriented and heavily eroded blocks of terrain. Another example is seen at the bottom of this scene, filling the 2.5 km-deep depression into which Osuga Valles empties.

Link To Full Story

Saturn’s Hexagon: An Amazing Phenomenon


Acknowledgements: Planetary Sciences Group UPV/EHU-Cassini NASA/ESA

Acknowledgements: Planetary Sciences Group UPV/EHU-Cassini NASA/ESA

An unusual structure with a hexagonal shape surrounding Saturn’s north pole was spotted on the planet for the first time thirty years ago. Nothing similar with such a regular geometry had ever been seen on any planet in the Solar System. The Planetary Sciences Group has now been able to study and measure the phenomenon and, among other achievements, establish its rotation period. What is more, this period could be the same as that of the planet itself. Saturn is the only planet in the Solar System whose rotation time remains unknown. The research illustrates the front cover of the journal Geophysical Research Letters and has been highlighted by the publication’s editor.

In 1980 and 1981 NASA’s Voyager 1 and 2 space probes passed for the first time over the planet Saturn, located 1,500 million km from the Sun. Among their numerous discoveries they observed a strange, hexagon-shaped structure in the planet’s uppermost clouds surrounding its north pole. The hexagon remained virtually static, without moving, vis-à-vis the planet’s overall rotation that was not accurately known. What is more, the images captured by the Voyager probes found that the clouds were moving rapidly inside the hexagon in an enclosed jet stream and were being dragged by winds travelling at over 400 km/h.

Link To Full Story

Ancient Volcanic Explosions Shed Light On Mercury’s Origins


Mercury1.preview_smMercury was long thought to be lacking volatile compounds that cause explosive volcanism. That view started to change when the MESSENGER spacecraft returned pictures of pyroclastic deposits — the telltale signature of volcanic explosions. Now more detailed data from MESSENGER shows that volcanoes exploded on Mercury for a substantial portion of the planet’s history. The findings suggest Mercury not only had volatiles but held on to them for longer than scientists had expected.

The surface of Mercury crackled with volcanic explosions for extended periods of the planet’s history, according to a new analysis led by researchers at Brown University. The findings are surprising considering Mercury wasn’t supposed to have explosive volcanism in the first place, and they could have implications for understanding how Mercury formed.

Mercury was long thought to be bone dry when it comes to volatiles, and without volatiles there can’t be explosive volcanism. But that view started to change in 2008, after NASA’s MESSENGER spacecraft made its first flybys of Mercury. Those glimpses of the surface revealed deposits of pyroclastic ash — the telltale signs of volcanic explosions — peppering the planet’s surface. It was a clue that at some point in its history Mercury’s interior wasn’t as bereft of volatiles as had been assumed.

Link To Full Story

NASA Space Assets Detect Ocean Inside Saturn Moon


Illustration. Image credit: NASA/JPL-Caltech

Illustration. Image credit: NASA/JPL-Caltech

NASA’s Cassini spacecraft and Deep Space Network have uncovered evidence Saturn’s moon Enceladus harbors a large underground ocean of liquid water, furthering scientific interest in the moon as a potential home to extraterrestrial microbes.

Researchers theorized the presence of an interior reservoir of water in 2005 when Cassini discovered water vapor and ice spewing from vents near the moon’s south pole. The new data provide the first geophysical measurements of the internal structure of Enceladus, consistent with the existence of a hidden ocean inside the moon. Findings from the gravity measurements are in the Friday, April 4 edition of the journal Science.

“The way we deduce gravity variations is a concept in physics called the Doppler Effect, the same principle used with a speed-measuring radar gun,” said Sami Asmar of NASA’s Jet Propulsion Laboratory in Pasadena, Calif., a coauthor of the paper. “As the spacecraft flies by Enceladus, its velocity is perturbed by an amount that depends on variations in the gravity field that we’re trying to measure. We see the change in velocity as a change in radio frequency, received at our ground stations here all the way across the solar system.”

Link To Full Story
Link To Another Story
Link To Another Story

NASA Releases First Interactive Mosaic Of Lunar North Pole


Image Credit: NASA/GSFC/Arizona State University

Image Credit: NASA/GSFC/Arizona State University

Scientists, using cameras aboard NASA’s Lunar Reconnaissance Orbiter (LRO), have created the largest high resolution mosaic of our moon’s north polar region. The six-and-a-half feet (two-meters)-per-pixel images cover an area equal to more than one-quarter of the United States.

Web viewers can zoom in and out, and pan around an area. Constructed from 10,581 pictures, the mosaic provides enough detail to see textures and subtle shading of the lunar terrain. Consistent lighting throughout the images makes it easy to compare different regions.

“This unique image is a tremendous resource for scientists and the public alike,” said John Keller, LRO project scientist at NASA’s Goddard Space Flight Center, Greenbelt, Md. “It’s the latest example of the exciting insights and data products LRO has been providing for nearly five years.”

“Creation of this giant mosaic took four years and a huge team effort across the LRO project,” said Mark Robinson, principal investigator for the LROC at Arizona State University in Tempe. “We now have a nearly uniform map to unravel key science questions and find the best landing spots for future exploration.”

Link To Full Story And Other Links

The Glory Of Venus


The glory on Venus cloud tops in false colors. © ESA/MPS/DLR/IDA

The glory on Venus cloud tops in false colors. © ESA/MPS/DLR/IDA

When travelling above the clouds, airplane passengers sometimes witness a glory: a light phenomenon similar to a ring-shaped rainbow. Droplets in the clouds back-scattering the sunlight are responsible for this appearance. A team of scientists led by the Max Planck Institute for Solar System Research (MPS) in Göttingen have now fully imaged a glory on Venus – and thus for the first time on a planet other than Earth. The data was obtained by ESA’s space probe Venus Express. The data imply that the sulfuric acid in Venus’ cloud tops could additionally contain pure sulfur or iron chloride – and may help solve one of the oldest mysteries of Venus research.

The veil of clouds surrounding Venus is as beautiful as it is hostile to life. Sulfuric acid constitutes their main component. Together with the planet’s dense atmosphere composed mainly of carbon dioxide, this cloud cover causes Venus’ extreme greenhouse effect. Temperatures of more than 400 degrees Celsius are common on the planet’s surface. The exact composition of the creamy-yellow clouds is still unclear. Almost 90 years ago, ground-based observations had shown that these clouds “swallow” ultraviolet light of certain wavelengths. Sulfuric acid alone cannot be responsible for this effect.

Link To Full Story
Link To Another Story

Mars Rover Heads Uphill After Solving ‘Doughnut’ Riddle

February 15, 2014 Leave a comment

 Image Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.

Image Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.

Researchers have determined the now-infamous Martian rock resembling a jelly doughnut, dubbed Pinnacle Island, is a piece of a larger rock broken and moved by the wheel of NASA’s Mars Exploration Rover Opportunity in early January.

Only about 1.5 inches wide (4 centimeters), the white-rimmed, red-centered rock caused a stir last month when it appeared in an image the rover took Jan. 8 at a location where it was not present four days earlier.

More recent images show the original piece of rock struck by the rover’s wheel, slightly uphill from where Pinnacle Island came to rest.

“Once we moved Opportunity a short distance, after inspecting Pinnacle Island, we could see directly uphill an overturned rock that has the same unusual appearance,” said Opportunity Deputy Principal Investigator Ray Arvidson of Washington University in St. Louis. “We drove over it. We can see the track. That’s where Pinnacle Island came from.”

Link To Full Story
Link To Another Story

Follow

Get every new post delivered to your Inbox.

Join 679 other followers