Archive

Archive for July 26, 2012

RIT Leads Development Of Next-generation Infrared Detectors


Cheaper, larger and better infrared detectors grown on silicon wafers could give more scientists access to infrared astronomy and further spur the hunt for exoplanets and the study of the universe’s acceleration. Closer to home, the same technology could also advance remote sensing and medical imaging.

The National Science Foundation has awarded Rochester Institute of Technology $1.2 million to develop, fabricate and test a new family of detectors grown on silicon wafer substrates by Raytheon Visions Systems.

“If this is successful, the astronomy community will have a ready supply of affordable detectors that could be deployed on a wider range of facilities,” says Don Figer, director of the Center for Detectors at RIT and lead scientist on the project. “Right now infrared detectors are so expensive that there are only a few on the world’s biggest telescopes—Keck, Gemini, the Very Large Telescope. Those are the only facilities that can afford them, and then they can only afford a few. They have big telescopes with big focal planes and tiny detectors in the middle.”

Full Story: http://www.rit.edu/news/release.php?id=49252

Advertisements

Largest Ever Cherenkov Telescope Sees First Light


On 26 July 2012, the H.E.S.S. II telescope started operation in Namibia. Dedicated to observing the most violent and extreme phenomena of the Universe in very high energy gamma-rays, H.E.S.S. II is the largest Cherenkov telescope ever built, with its 28-meter-sized mirror. Together with the four smaller (12 meter) telescopes already in operation since 2004, the H.E.S.S. (“High Energy Stereoscopic System”) observatory will continue to define the forefront of ground-based gamma ray astronomy and will allow deeper understanding of known high-energy cosmic sources such as supermassive black holes, pulsars and supernovae, and the search for new classes of high-energy cosmic sources.

Gamma rays are believed to be produced by natural cosmic particle accelerators such as supermassive black holes, supernovae, pulsars, binary stars, and maybe even relics of the Big Bang. The universe is filled with these natural cosmic accelerators, impelling charged particles such as electrons and ions to energies far beyond what the particle accelerators built by mankind can reach. As high-energy gamma rays are secondary products of these cosmic acceleration processes, gamma ray telescopes allow us to study these high-energy sources. Today, well over one hundred cosmic sources of very high-energy gamma rays are known. With H.E.S.S. II, processes in these objects can be investigated in superior detail, also anticipating many new sources, as well as new classes of sources.

Full Story: http://www.mpi-hd.mpg.de/hfm/HESS/pages/press/2012/HESS_II_first_light/