Home > Astronomy, Astrophysics, General Astronomy > Graphite Experiment Shines New Light On Giant Planets, White Dwarfs & Laser-Driven Fusion

Graphite Experiment Shines New Light On Giant Planets, White Dwarfs & Laser-Driven Fusion


An international team led by researchers from the University of Warwick and Oxford University is now dealing with unexpected results of an experiment with strongly heated graphite (up to 17,000 degrees Kelvin). The findings may pose a new problem for physicists working in laser-driven nuclear fusion and may also lead astrophysicists to revise our understanding of the life cycle of giant planets and stars.

The researchers were attempting to get a better understanding about how energy is shared between the different species of matter, especially, how it is transferred from strongly heated electrons to the heavy ionic cores of atoms that have been left cool. The difference in temperatures between the hot electrons and cooler ions should level out quickly as the electrons interact with the ions; thus, the time it takes to reach a common temperature is a good measure of the interaction strength between the two. This interaction also defines, for instance, how heat or radiation is transported from the inside of a planet or star to its surface and, thus, planetary and stellar evolution. The process is also essential for nuclear fusion where the electrons are heated by fusion products but the ions need to be hot for more fusion to occur.

Their more precise experiment in fact shows that the equilibration of the temperatures for hot electron and cool ions is actually three times slower than previous measurements have shown and more than ten times slower than the mathematical model predicts. This means that the basic process of electron-ion interaction is only poorly understood.

Full Story: http://www2.warwick.ac.uk/newsandevents/pressreleases/graphite_experiment_shines/

Advertisements
  1. No comments yet.
  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: