Home > Astronomy, Cosmology, Galaxies, General Astronomy > Astronomers Find Massive Supply Of Fresh Gas Around Modern Galaxies

Astronomers Find Massive Supply Of Fresh Gas Around Modern Galaxies


Galaxies have a voracious appetite for fuel — in this case fresh gas, but astronomers have had difficulty finding the pristine gas that should be falling onto galaxies. Now scientists have provided direct empirical evidence for these gas flows using new observations from the Hubble Space Telescope. Their observations using Hubble’s two ultraviolet spectrographs, the Cosmic Origins Spectrograph and the Space Telescope Imaging Spectrograph, show large quantities of cool gas with very low quantities of heavy elements in the gaseous cocoons surrounding modern galaxies. The lack of heavy elements indicates this gas in the “circumgalactic medium” of the galaxies has not been strongly processed through stars.

The team led by Nicolas Lehner, a research associate professor at the University of Notre Dame, identified gaseous streams near galaxies through the absorption they imprint on the spectra of distant, bright background quasars. The atoms in the gas remove small amounts of the light, and as the light from the quasars passes through the gas around galaxies, the chemical elements leave characteristic spectral “fingerprints” that allow astronomers to study the physical and chemical properties of the gas. Lehner and collaborators searched for the signature of gas within about 100,000 to 300,000 light-years of galaxies, identifying this gas due to its strong hydrogen absorption, a known signature of circumgalactic gas. They subsequently determined the amount of “metals” — all elements heavier than hydrogen and helium — in this gas to test whether the circumgalactic matter was being newly accreted from intergalactic space and lacking metals or being ejected from the galaxies themselves with strong metals.

Dropbox Download for Text and Data: https://www.dropbox.com/sh/a0wdv77g4mrt9b4/gvRaxI86t2

Advertisements
  1. No comments yet.
  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: