Archive for March 14, 2013

ExoMars: ESA And Roscosmos Set For Mars Missions

ESA and the Russian federal space agency, Roscosmos, have signed a formal agreement to work in partnership on the ExoMars programme towards the launch of two missions in 2016 and 2018.

Establishing whether life ever existed on Mars is one of the outstanding scientific questions of our time and the highest scientific priority of the ExoMars programme.

The partners have agreed a balanced sharing of responsibilities for the different mission elements. ESA will provide the Trace Gas Orbiter (TGO) and the Entry, Descent and Landing Demonstrator Module (EDM) in 2016, and the carrier and rover in 2018.

Roscosmos will be responsible for the 2018 descent module and surface platform, and will provide launchers for both missions. Both partners will supply scientific instruments and will cooperate closely in the scientific exploitation of the missions.

Full Story:


Astronomers Celebrate New Era Of Discovery With ALMA Inauguration

ALMA, the Atacama Large Millimeter/submillimeter Array, was officially inaugurated today (3/13/2013) in a ceremony that brought together representatives from the international astronomical community. Today’s event marked the formal beginning of ALMA’s decades-long journey of discovery.

Able to observe the Universe by detecting light that is invisible to the human eye, ALMA will show us never-before-seen details about the birth of stars, infant galaxies in the early Universe, and planets coalescing around distant suns. It also will discover and measure the distribution of molecules — many essential for life — that form in the space between the stars.

ALMA is a single instrument composed of 66 high-precision antennas that function as one telescope. Constructed over a period of 10 years in the high desert of the Chilean Andes at a total cost of $1.3 billion (US), ALMA is an international partnership, combining the scientific, technical, and financial resources of North America, Europe, and East Asia.

The telescope already has provided unprecedented views of the cosmos with only a portion of its full array. With the last of the antennas now undergoing final testing, astronomers will have access to the most sensitive and highest-resolution instrument operating at millimeter and submillimeter wavelengths, the transition between infrared light and radio waves.

Full Story:

NASA Rover Finds Conditions Once Suited For Ancient Life On Mars

An analysis of a rock sample collected by NASA’s Curiosity rover shows ancient Mars could have supported living microbes.

Scientists identified sulfur, nitrogen, hydrogen, oxygen, phosphorus and carbon — some of the key chemical ingredients for life — in the powder Curiosity drilled out of a sedimentary rock near an ancient stream bed in Gale Crater on the Red Planet last month.

“A fundamental question for this mission is whether Mars could have supported a habitable environment,” said Michael Meyer, lead scientist for NASA’s Mars Exploration Program at the agency’s headquarters in Washington. “From what we know now, the answer is yes.”

Clues to this habitable environment come from data returned by the rover’s Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments. The data indicate the Yellowknife Bay area the rover is exploring was the end of an ancient river system or an intermittently wet lake bed that could have provided chemical energy and other favorable conditions for microbes.

Full Story:

ALMA Rewrites History Of Universe’s Stellar Baby Boom

Credit: ALMA (ESO/NRAO/NAOJ), Y. Hezaveh et al.

Credit: ALMA (ESO/NRAO/NAOJ), Y. Hezaveh et al.

Observations with the Atacama Large Millimeter/submillimeter Array (ALMA) show that the most vigorous bursts of star birth in the cosmos took place much earlier than previously thought. The results are published in a set of papers to appear in the journal Nature on 14 March 2013, and in the Astrophysical Journal. The research is the most recent example of the discoveries coming from the new international ALMA observatory, which celebrates its inauguration today.

The most intense bursts of star birth are thought to have occurred in the early Universe, in massive, bright galaxies. These starburst galaxies convert vast reservoirs of cosmic gas and dust into new stars at a furious pace — many hundreds of times faster than in stately spiral galaxies like our own galaxy, the Milky Way. By looking far into space, at galaxies so distant that their light has taken many billions of years to reach us, astronomers can observe this busy period in the Universe’s youth.

“The more distant the galaxy, the further back in time one is looking, so by measuring their distances we can piece together a timeline of how vigorously the Universe was making new stars at different stages of its 13.7 billion year history,” said Joaquin Vieira (California Institute of Technology, USA), who led the team and is lead author of the paper in the journal Nature.

The international team of researchers first discovered these distant and enigmatic starburst galaxies with the US National Science Foundation’s 10-metre South Pole Telescope (SPT) and then used ALMA to zoom in on them to explore the stellar baby boom in the young Universe. They were surprised to find that many of these distant dusty star-forming galaxies are even further away than expected. This means that, on average, their bursts of star birth took place 12 billion years ago, when the Universe was just under 2 billion years old — a full billion years earlier than previously thought.

Full Story: