Archive for June, 2013

Astronomers Spy On Galaxies In The Raw

A CSIRO radio telescope has detected the raw material for making the first stars in galaxies that formed when the Universe was just three billion years old — less than a quarter of its current age. This opens the way to studying how these early galaxies make their first stars.

The telescope is CSIRO’s Australia Telescope Compact Array telescope near Narrabri, NSW. “It one of very few telescopes in the world that can do such difficult work, because it is both extremely sensitive and can receive radio waves of the right wavelengths,” says CSIRO astronomer Professor Ron Ekers.

The raw material for making stars is cold molecular hydrogen gas, H2. It can’t be detected directly but its presence is revealed by a ‘tracer’ gas, carbon monoxide (CO), which emits radio waves.

In one project, astronomer Dr Bjorn Emonts (CSIRO Astronomy and Space Science) and his colleagues used the Compact Array to study a massive, distant conglomerate of star-forming ‘clumps’ or ‘proto-galaxies’ that are in the process of coming together as a single massive galaxy. This structure, called the Spiderweb, lies more than ten thousand million light-years away [at a redshift of 2.16].

Full Story:


Dusty Surprise Around Giant Black Hole

Artist’s impression. Credit: ESO/M. Kornmesser

Artist’s impression. Credit: ESO/M. Kornmesser

ESO’s Very Large Telescope Interferometer has gathered the most detailed observations ever of the dust around the huge black hole at the centre of an active galaxy. Rather than finding all of the glowing dust in a doughnut-shaped torus around the black hole, as expected, the astronomers find that much of it is located above and below the torus. These observations show that dust is being pushed away from the black hole as a cool wind — a surprising finding that challenges current theories and tells us how supermassive black holes evolve and interact with their surroundings.

Over the last twenty years, astronomers have found that almost all galaxies have a huge black hole at their centre. Some of these black holes are growing by drawing in matter from their surroundings, creating in the process the most energetic objects in the Universe: active galactic nuclei (AGN). The central regions of these brilliant powerhouses are ringed by doughnuts of cosmic dust dragged from the surrounding space, similar to how water forms a small whirlpool around the plughole of a sink. It was thought that most of the strong infrared radiation coming from AGN originated in these doughnuts.

But new observations of a nearby active galaxy called NGC 3783, harnessing the power of the Very Large Telescope Interferometer (VLTI) at ESO’s Paranal Observatory in Chile [2], have given a team of astronomers a surprise.

Full Story:

Billion-Pixel View Of Mars Comes From Curiosity Rover

Image credit: NASA/JPL-Caltech/MSSS

Image credit: NASA/JPL-Caltech/MSSS

A billion-pixel view from the surface of Mars, from NASA’s Mars rover Curiosity, offers armchair explorers a way to examine one part of the Red Planet in great detail.

The first NASA-produced view from the surface of Mars larger than one billion pixels stitches together nearly 900 exposures taken by cameras onboard Curiosity and shows details of the landscape along the rover’s route.

The full-circle scene surrounds the site where Curiosity collected its first scoops of dusty sand at a windblown patch called “Rocknest,” and extends to Mount Sharp on the horizon.

“It gives a sense of place and really shows off the cameras’ capabilities,” said Bob Deen of the Multi-Mission Image Processing Laboratory at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “You can see the context and also zoom in to see very fine details.”

Full Story and Image Links:

Texas Astronomers Discover Pulsations In Crystalized, Dying Star

Astronomers from The University of Texas at Austin and colleagues have used the 2.1-meter Otto Struve Telescope at the university’s McDonald Observatory to discover pulsations from the crystalized remnant of a burnt-out star. The finding will allow astronomers to see below the star’s atmosphere and into its interior, much like earthquakes allow geologists to study compositions below Earth’s surface. The findings appear in the current issue of The Astrophysical Journal Letters.

The Texas astronomers made their discovery in collaboration with astronomers from Brazil’s Universidade Federal do Rio Grande do Sul, the University of Oklahoma, and the Smithsonian Astrophysical Observatory.

The star, GD 518, is roughly 170 light years from Earth in the constellation Draco, but far too faint to be seen without a telescope. It is a white dwarf, a star at the end of its life cycle that is essentially just a burnt-out core, the ashy byproduct of previous epochs of nuclear fusion.

The star is unique in that much of it is likely suspended in a state more akin to a solid than a liquid or gas. The interiors of dying stars can become crystalized similar to the way in which frigid water freezes into ice, like the slow formation of glaciers in cooling ocean water.

Full Story:

Hubble Spots Galaxies In Close Encounter

Image credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)

Image credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)

The NASA/ESA Hubble Space Telescope has produced this vivid image of a pair of interacting galaxies known as Arp 142. When two galaxies stray too close to each other they begin to interact, causing spectacular changes in both objects. In some cases the two can merge — but in others, they are ripped apart.

Just below the centre of this image is the blue, twisted form of galaxy NGC 2936, one of the two interacting galaxies that form Arp 142 in the constellation of Hydra. Nicknamed “the Penguin” or “the Porpoise” by amateur astronomers, NGC 2936 used to be a standard spiral galaxy before being torn apart by the gravity of its cosmic companion.

The remnants of its spiral structure can still be seen — the former galactic bulge now forms the “eye” of the penguin, around which it is still possible to see where the galaxy’s pinwheeling arms once were. These disrupted arms now shape the cosmic bird’s “body” as bright streaks of blue and red across the image. These streaks arch down towards NGC 2936’s nearby companion, the elliptical galaxy NGC 2937, visible here as a bright white oval. The pair show an uncanny resemblance to a penguin safeguarding its egg.

Full Story and Links:

Super-Hurricane-Force Winds On Venus Are Getting Stronger

June 18, 2013 1 comment

Venus cloud tops. Credit: ESA/MPS/DLR/IDA

Venus cloud tops. Credit: ESA/MPS/DLR/IDA

As the closest planet to Earth, Venus is a relatively easy object to observe. However, many mysteries remain, not least the super-rotation of Venus’ atmosphere, which enables high altitude winds to circle the planet in only four days. Now images of cloud features sent back by ESA’s Venus Express orbiter have revealed that these remarkably rapid winds are becoming even faster.

Similar in size to Earth, Venus has an extremely dense, carbon-dioxide-rich atmosphere and the planet’s surface is completely hidden by a blanket of bland, yellowish cloud. Only at ultraviolet wavelengths (and to a lesser extent in the infrared) do striking cloud streaks and individual cells emerge, due to the presence of some unknown UV absorber in the cloud deck.

By tracking the movements of these distinct cloud features, observers have been able to measure the super-hurricane-force winds that sweep around the planet at the cloud tops, some 70 km above the scorching volcanic plains.

Full Story:

Sunny Super-Earth?

A research team led by Akihiko Fukui (NAOJ), Norio Narita (NAOJ) and Kenji Kuroda (the University of Tokyo) observed the atmosphere of super-Earth “GJ3470b” in Cancer for the first time in the world using two telescopes at OAO (Okayama Astrophysical Observatory, NAOJ). This super-Earth is an exoplanet, having only about 14 times the mass of our home planet, and it is the second lightest one among already-surveyed exoplanets. The observational data revealed that this planet is highly likely to NOT be covered by thick clouds.

The researchers expect that future detection of the specific composition of the planet’s atmosphere based on highly accurate observations with larger aperture telescopes, such as the Subaru Telescope. This planet orbits around its primary star very closely at a rapid rate. We don’t yet understand the formation process of such planets. If future detailed observations of the atmosphere detect any substance that becomes ice at low temperatures, it probably means that this planet was originally formed at a distance (a few astronomical units) from the primary star, where ice could exist, and moved toward the primary star thereafter. In contrast, if such a substance cannot be found in the atmosphere, this planet was quite likely formed at its present location (near the primary star) from its early stage. Thus, it is expected that the detailed observations of the atmosphere of GJ3470b can begin to reveal the mysteries behind the formation of super-Earths.

Full Story: