Home > Astronomy, Astrophysics, General Astronomy, Star & Solar System Formation > Commentary On The Press Release “A Drastic Chemical Change Occurring In Birth Of Planetary System: Has The Solar System Also Experienced it?”

Commentary On The Press Release “A Drastic Chemical Change Occurring In Birth Of Planetary System: Has The Solar System Also Experienced it?”


An infrared image of the protostar L1527 taken by the Spitzer Space Telescope. Credit: J. Tobin/NASA/JPL-Caltech

An infrared image of the protostar L1527 taken by the Spitzer Space Telescope.
Credit: J. Tobin/NASA/JPL-Caltech

Stars are formed by the contraction of interstellar gas and dust. Around a protostar, gas and dust form a disk in which planets are eventually formed. Then, are the chemical compositions of the interstellar cloud and the disk identical? The new ALMA observations show that the answer is ‘no.’ This finding has a large impact on understandings of the formation process of planets and protoplanetary disks.

The international research team, led by Dr. Nami Sakai, an assistant professor at the Department of Physics, The University of Tokyo, observed a baby star L1527 in the constellation Taurus with ALMA. The team observed radio emission from cyclic-C3H2 [note 1] and sulfur monoxide (SO) molecules to analyze the motion and temperature of the gas around the baby star.

L1527 is a well-known protostar (baby star) and many astronomers have pointed telescopes at it. For example, NASA’s Spitzer Space Telescope took infrared images of the star. The stellar light escapes through a cavity excavated by a powerful bipolar gas flow from the star and illuminates the surrounding gas, which makes a butterfly-shaped nebula extending in the east-west direction (Figure 1). Past radio observations revealed that gas is circling around the star to form a disk and we see the disk edge-on.

Radio observations by ALMA have the advantage of being able to see the gas directly, which is invisible in infrared light. Various molecules in the gas emit characteristic radiation as radio waves under characteristic conditions (temperature, density, chemical compositions). Therefore astronomers can investigate the nature of the gas by observing various molecules.

Link To Full Story

Advertisements
  1. No comments yet.
  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: