Archive

Archive for April 4, 2014

NASA Hubble Team Finds Monster “El Gordo” Galaxy Cluster Bigger Than Thought


Image Credit: NASA, ESA, and J. Jee (University of California, Davis)

Image Credit: NASA, ESA, and J. Jee (University of California, Davis)

NASA’s Hubble Space Telescope has weighed the largest known galaxy cluster in the distant universe, catalogued as ACT-CL J0102-4915, and found it definitely lives up to its nickname — El Gordo (Spanish for “the fat one”).

By measuring how much the cluster’s gravity warps images of galaxies in the distant background, a team of astronomers has calculated the cluster’s mass to be as much as 3 million billion times the mass of our sun. Hubble data show the galaxy cluster, which is 9.7 billion light-years away from Earth, is roughly 43 percent more massive than earlier estimates.

The team used Hubble to measure how strongly the mass of the cluster warped space. Hubble’s high resolution allowed measurements of so-called “weak lensing,” where the cluster’s immense gravity subtly distorts space like a funhouse mirror and warps images of background galaxies. The greater the warping, the more mass is locked up in the cluster.

“What I did is basically look at the shapes of the background galaxies that are farther away than the cluster itself,” explained lead author James Jee of the University of California at Davis. “It’s given us an even stronger probability that this is really an amazing system very early in the universe.”

A fraction of this mass is locked up in several hundred galaxies that inhabit the cluster and a larger fraction is in hot gas that fills the entire volume of the cluster. The rest is tied up in dark matter, an invisible form of matter that makes up the bulk of the mass of the universe.

Link To Full Story
Link To Another Story

Advertisements

Ancient Volcanic Explosions Shed Light On Mercury’s Origins


Mercury1.preview_smMercury was long thought to be lacking volatile compounds that cause explosive volcanism. That view started to change when the MESSENGER spacecraft returned pictures of pyroclastic deposits — the telltale signature of volcanic explosions. Now more detailed data from MESSENGER shows that volcanoes exploded on Mercury for a substantial portion of the planet’s history. The findings suggest Mercury not only had volatiles but held on to them for longer than scientists had expected.

The surface of Mercury crackled with volcanic explosions for extended periods of the planet’s history, according to a new analysis led by researchers at Brown University. The findings are surprising considering Mercury wasn’t supposed to have explosive volcanism in the first place, and they could have implications for understanding how Mercury formed.

Mercury was long thought to be bone dry when it comes to volatiles, and without volatiles there can’t be explosive volcanism. But that view started to change in 2008, after NASA’s MESSENGER spacecraft made its first flybys of Mercury. Those glimpses of the surface revealed deposits of pyroclastic ash — the telltale signs of volcanic explosions — peppering the planet’s surface. It was a clue that at some point in its history Mercury’s interior wasn’t as bereft of volatiles as had been assumed.

Link To Full Story

NOAO/Gemini: Sakurai’s Object: Stellar Evolution In Real Time


Stellar lifetimes are measured in billions of years, so changes in their appearance rarely take place on a human timescale. Thus an opportunity to observe a star passing from one stage of life to another on a timescale of months to years is very exciting, as there are only a very few examples known. One such star is Sakurai’s Object (V4334 Sgr). First reported by a Japanese amateur astronomer in 1996 as a “nova-like object,” Sakurai’s Object had been only a few years before the faint central star of a planetary nebula. In the 1990’s Sakurai’s Object brightened by a factor of 10000. This brightening has been attributed to a final helium shell flash. In this process the burned out core of the star at the center of the planetary nebula re-ignites.

The final helium shell flash is violent, ejecting a cloud of dust and gas that forms a thick cocoon around the star blocking all visible light. By 2000 the dust cloud was so thick that Sakurai’s Object was not visible even with the Hubble Space Telescope (HST). Scientists at the National Optical Astronomy Observatory (NOAO) have been observing the sky in the area of Sakurai’s Object waiting for infrared radiation to break through the dust cloud. Infrared radiation penetrates dust much more efficiently than optical light. A detection of the infrared light would mean that the dust cloud is breaking apart, ultimately permitting light from the star to escape.

Using the Altair adaptive optics (AO) system with the Gemini North telescope on Mauna Kea in Hawai’i to compensate for distortions to starlight caused by the Earth’s atmosphere, two NOAO astronomers were able to observe the shell of escaping material around the star. According to Dr. Richard Joyce, who was in charge of the imaging program, “Using AO at Gemini gave us an unprecedented view into the heart of this object and showed us a number of faint stars where Sakurai’s Object should be.”

Link To Full Story

Fermi Data Tantalize With New Clues To Dark Matter


Image Credit: T. Linden, Univ. of Chicago

Image Credit: T. Linden, Univ. of Chicago

A new study of gamma-ray light from the center of our galaxy makes the strongest case to date that some of this emission may arise from dark matter, an unknown substance making up most of the material universe. Using publicly available data from NASA’s Fermi Gamma-ray Space Telescope, independent scientists at the Fermi National Accelerator Laboratory (Fermilab), the Harvard-Smithsonian Center for Astrophysics (CfA), the Massachusetts Institute of Technology (MIT) and the University of Chicago have developed new maps showing that the galactic center produces more high-energy gamma rays than can be explained by known sources and that this excess emission is consistent with some forms of dark matter.

The galactic center teems with gamma-ray sources, from interacting binary systems and isolated pulsars to supernova remnants and particles colliding with interstellar gas. It’s also where astronomers expect to find the galaxy’s highest density of dark matter, which only affects normal matter and radiation through its gravity. Large amounts of dark matter attract normal matter, forming a foundation upon which visible structures, like galaxies, are built.

No one knows the true nature of dark matter, but WIMPs, or Weakly Interacting Massive Particles, represent a leading class of candidates. Theorists have envisioned a wide range of WIMP types, some of which may either mutually annihilate or produce an intermediate, quickly decaying particle when they collide. Both of these pathways end with the production of gamma rays — the most energetic form of light — at energies within the detection range of Fermi’s Large Area Telescope (LAT).

Link To Full Story And Video

Watching For A Black Hole To Gobble Up A Gas Cloud


Simulation. Image by ESO/MPE/Marc Schartmann

Simulation. Image by ESO/MPE/Marc Schartmann

Right now a doomed gas cloud is edging ever closer to the supermassive black hole at the center of our Milky Way galaxy. These black holes feed on gas and dust all the time, but astronomers rarely get to see mealtime in action.

Northwestern University’s Daryl Haggard has been closely watching the little cloud, called G2, and the black hole, called Sgr A*, as part of a study that should eventually help solve one of the outstanding questions surrounding black holes: How exactly do they achieve such supermassive proportions?

The closest approach between the black hole and gas cloud is predicted to occur any day now. Haggard has been using two world-class observatories, the Chandra X-ray Observatory and the Very Large Array, to gather data on this potentially spectacular encounter.

Link To Full Story

NASA Space Assets Detect Ocean Inside Saturn Moon


Illustration. Image credit: NASA/JPL-Caltech

Illustration. Image credit: NASA/JPL-Caltech

NASA’s Cassini spacecraft and Deep Space Network have uncovered evidence Saturn’s moon Enceladus harbors a large underground ocean of liquid water, furthering scientific interest in the moon as a potential home to extraterrestrial microbes.

Researchers theorized the presence of an interior reservoir of water in 2005 when Cassini discovered water vapor and ice spewing from vents near the moon’s south pole. The new data provide the first geophysical measurements of the internal structure of Enceladus, consistent with the existence of a hidden ocean inside the moon. Findings from the gravity measurements are in the Friday, April 4 edition of the journal Science.

“The way we deduce gravity variations is a concept in physics called the Doppler Effect, the same principle used with a speed-measuring radar gun,” said Sami Asmar of NASA’s Jet Propulsion Laboratory in Pasadena, Calif., a coauthor of the paper. “As the spacecraft flies by Enceladus, its velocity is perturbed by an amount that depends on variations in the gravity field that we’re trying to measure. We see the change in velocity as a change in radio frequency, received at our ground stations here all the way across the solar system.”

Link To Full Story
Link To Another Story
Link To Another Story