Home > Astronomy, Astrophysics, General Astronomy, Pulsars > Smallest Speed Jump Of Pulsar Caused By Billions Of Superfluid Vortices

Smallest Speed Jump Of Pulsar Caused By Billions Of Superfluid Vortices


Artist’s impression of a pulsar. Credit: NASA

Artist’s impression of a pulsar. Credit: NASA

A team of astronomers, including Danai Antonopoulou and Anna Watts from the University of Amsterdam, has discovered that sudden speed jumps in the rotational velocity of pulsars have a minimum size, and that they are caused not by the unpinning and displacement of just one sub-surface superfluid vortex, but by billions. This result is important to our understanding of the behavior of matter under extreme conditions, and has been published this week in the journal Monthly Notices of the Royal Astronomical Society.

Pulsars are rotating neutron stars – remnants of massive stars that end their lives in supernova explosions. They act like cosmic lighthouses whose beams sweep through the Universe. Their rotational velocity decreases in time, but can suddenly increase in rare events called glitches. These glitches are caused by the unpinning and displacement of vortices that connect the crust with the mixture of particles containing superfluid neutrons beneath the crust.
The team of astronomers discovered that the glitches of the Crab Pulsar always involve a decrease in the rotational period of at least 0.055 nanoseconds. The Crab Pulsar was one of the first pulsars to be discovered and has been observed almost daily with the 42-ft Telescope at the Jodrell Bank Observatory over the last 29 years. The huge amount of data makes this object the best choice to study glitches.

Link To Full Story

Advertisements
  1. No comments yet.
  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: