Archive

Archive for June 3, 2014

Black Hole ‘Batteries’ Keep Blazars Going And Going


Astronomers studying two classes of black-hole-powered galaxies monitored by NASA’s Fermi Gamma-ray Space Telescope have found evidence that they represent different sides of the same cosmic coin. By unraveling how these objects, called blazars, are distributed throughout the universe, the scientists suggest that apparently distinctive properties defining each class more likely reflect a change in the way the galaxies extract energy from their central black holes.

“We can think of one blazar class as a gas-guzzling car and the other as an energy-efficient electric vehicle,” said lead researcher Marco Ajello, an astrophysicist at Clemson University in South Carolina. “Our results suggest that we’re actually seeing hybrids, which tap into the energy of their black holes in different ways as they age.”

Active galaxies possess extraordinarily luminous cores powered by black holes containing millions or even billions of times the mass of the sun. As gas falls toward these supermassive black holes, it settles into an accretion disk and heats up. Near the brink of the black hole, through processes not yet well understood, some of the gas blasts out of the disk in jets moving in opposite directions at nearly the speed of light.

Blazars are the highest-energy type of active galaxy and emit light across the spectrum, from radio to gamma rays. They make up more than half of the discrete gamma-ray sources cataloged by Fermi’s Large Area Telescope, which has detected more than 1,000 to date. Astronomers think blazars appear so intense because they happen to tip our way, bringing one jet nearly into our line of sight. Looking almost directly down the barrel of a particle jet moving near the speed of light, emissions from the jet and the region producing it dominate our view.

Link To Full Story And Video

CERN’s ALPHA Experiment Measures Charge Of Antihydrogen


Geneva, 3 June 2014. In a paper published in the journal Nature Communications today, the ALPHA experiment at CERN1’s Antiproton Decelerator (AD) reports a measurement of the electric charge of antihydrogen atoms, finding it to be compatible with zero to eight decimal places. Although this result comes as no surprise, since hydrogen atoms are electrically neutral, it is the first time that the charge of an antiatom has been measured to high precision.

“This is the first time we have been able to study antihydrogen with some precision,” said ALPHA spokesperson Jeffrey Hangst. “We are optimistic that ALPHA’s trapping technique will yield many such insights in the future. We look forward to the restart of the AD program in August, so that we can continue to study antihydrogen with ever increasing accuracy.”

Antiparticles should be identical to matter particles except for the sign of their electric charge. So while the hydrogen atom is made up of a proton with charge +1 and an electron with charge -1, the antihydrogen atom consists of a charge -1 antiproton and a charge +1 positron. We know, however, that matter and antimatter are not exact opposites – nature seems to have a one-part in 10 billion preference for matter over antimatter, so it is important to measure the properties of antimatter to great precision: the principal goal of CERN’s AD experiments. ALPHA achieves this by using a complex system of particle traps that allow antihydrogen atoms to be produced and stored for long enough periods to study in detail. Understanding matter antimatter asymmetry is one of the greatest challenges in physics today. Any detectable difference between matter and antimatter could help solve the mystery and open a window to new physics.

Link To Full Story