Archive

Archive for December, 2014

Signs Of Europa Plumes Remain Elusive In Search Of Cassini Data

December 19, 2014 Leave a comment

Image credit: NASA/JPL-Caltech/SETI Institute

Image credit: NASA/JPL-Caltech/SETI Institute

A fresh look at data collected by NASA’s Cassini spacecraft during its 2001 flyby of Jupiter shows that Europa’s tenuous atmosphere is even thinner than previously thought and also suggests that the thin, hot gas around the moon does not show evidence of plume activity occurring at the time of the flyby. The new research provides a snapshot of Europa’s state of activity at that time, and suggests that if there is plume activity, it is likely intermittent.

The Europa results are being presented today at the American Geophysical Union fall meeting in San Francisco and published in the Astrophysical Journal. Europa is considered one of the most exciting destinations in the solar system for future exploration because it shows strong indications of having an ocean beneath its icy crust.

Members of Cassini’s ultraviolet imaging spectrograph (UVIS) team analyzed data collected by their instrument during the brief time it observed Europa in 2001, as Cassini sped through the Jupiter system en route to Saturn. The observations show that most of the hot, excited gas, or plasma, around Europa originates not from the moon itself, but from volcanoes on the nearby moon Io. In fact, from their data, the researchers calculated that Europa contributes 40 times less oxygen than previously thought to its surrounding environment.

Link To Full Story

NOAO: Compact Galaxy Groups Reveal Details Of Their Close Encounters

December 18, 2014 Leave a comment

Credit: Dane Kleiner

Credit: Dane Kleiner

Galaxies – spirals laced with nests of recent star formation, quiescent ellipticals composed mainly of old red stars, and numerous faint dwarfs – are the basic visible building blocks of the Universe. Galaxies are rarely found in isolation, but rather in sparse groups – sort of galactic urban sprawl. But there are occasional dense concentrations, often found in the center of giant clusters, but also, intriguingly, as more isolated compact groups (and yes, called Compact Galaxy Groups or CGs). The galaxies in these Compact Groups show dramatic differences in the way they evolve and change with time compared with galaxies in more isolated surroundings. Why is this? Collisions between galaxies in these dense groups are common, leading to rapid star formation, but there seems to be more to the puzzle.

A team led by Dr Iraklis Konstantopoulos of the Australian Astronomical Observatory (AAO) has now obtained spectacular images of some CGs with the Dark Energy camera attached to the Blanco 4-meter telescope at the Cerro Tololo Inter-American Observatory (CTIO). This camera, constructed at the U.S. Department of Energy’s Fermi National Accelerator Laboratory, is able to image large areas of the sky to unprecedented faint limits. The team aims to combine these images with spectroscopic data from the AAO that will reveal the velocities of the galaxies, leading to a much better understanding of their gravitational interactions.

Link To Full Story And Photos

Origin Of High-Latitude Auroras Revealed

December 18, 2014 Leave a comment

Auroras are the most visible manifestation of the Sun’s effect on Earth, but many aspects of these spectacular displays are still poorly understood. Thanks to ESA’s Cluster and NASA’s Image satellites working together, a particular type of very high-latitude aurora has now been explained.

Although separated by some 150 million kilometres, the Sun and Earth are connected by the solar wind. This stream of plasma – electrically charged atomic particles – is launched by the Sun and travels across the Solar System, carrying its own magnetic field with it.

Link To Full Story And Video

NASA’s Chandra Weighs Most Massive Galaxy Cluster In Distant Universe

December 18, 2014 Leave a comment

Credit: X-ray: NASA/CXC/INAF/P.Tozzi, et al; Optical: NAOJ/Subaru and ESO/VLT; Infrared: ESA/Herschel

Credit: X-ray: NASA/CXC/INAF/P.Tozzi, et al; Optical: NAOJ/Subaru and ESO/VLT; Infrared: ESA/Herschel

Using NASA’s Chandra X-ray Observatory, astronomers have made the first determination of the mass and other properties of a very young, distant galaxy cluster.

The Chandra study shows that the galaxy cluster, seen at the comparatively young age of about 800 million years, is the most massive known cluster with that age or younger. As the largest gravitationally- bound structures known, galaxy clusters can act as crucial gauges for how the Universe itself has evolved over time.

The galaxy cluster was originally discovered using ESA’s XMM-Newton observatory and is located about 9.6 billion light years from Earth. Astronomers used X-ray data from Chandra that, when combined with scientific models, provides an accurate weight of the cluster, which comes in at a whopping 400 trillion times the mass of the Sun. Scientists believe the cluster formed about 3.3 billion years after the Big Bang.

Link To Full Story

‘Perfect Storm’ Quenching Star Formation Around A Supermassive Black Hole

December 17, 2014 Leave a comment

A combined Hubble Space Telescope / ALMA image of NGC 1266. Credit: NASA/ESA Hubble; ALMA (NRAO/ESO/NAOJ)

A combined Hubble Space Telescope / ALMA image of NGC 1266. Credit: NASA/ESA Hubble; ALMA (NRAO/ESO/NAOJ)

High-energy jets powered by supermassive black holes can blast away a galaxy’s star-forming fuel, resulting in so-called “red and dead” galaxies: those brimming with ancient red stars yet containing little or no hydrogen gas to create new ones.

Now astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have discovered that black holes don’t have to be nearly so powerful to shut down star formation. By observing the dust and gas at the center of NGC 1266, a nearby lenticular galaxy with a relatively modest central black hole, the astronomers have detected a “perfect storm” of turbulence that is squelching star formation in a region that would otherwise be an ideal star factory.

This turbulence is stirred up by jets from the galaxy’s central black hole slamming into an incredibly dense envelope of gas. This dense region, which may be the result of a recent merger with another smaller galaxy, blocks nearly 98 percent of material propelled by the jets from escaping the galactic center.

Link To Full Story

Venus Express Goes Gently Into The Night

December 17, 2014 Leave a comment

Copyright ESA–C. Carreau

Copyright ESA–C. Carreau

ESA’s Venus Express has ended its eight-year mission after far exceeding its planned life. The spacecraft exhausted its propellant during a series of thruster burns to raise its orbit following the low-altitude aerobraking earlier this year.

Since its arrival at Venus in 2006, Venus Express had been on an elliptical 24‑hour orbit, traveling 66 000 km above the south pole at its furthest point and to within 200 km over the north pole on its closest approach, conducting a detailed study of the planet and its atmosphere.

However, after eight years in orbit and with propellant for its propulsion system running low, Venus Express was tasked in mid-2014 with a daring aerobraking campaign, during which it dipped progressively lower into the atmosphere on its closest approaches to the planet.

Normally, the spacecraft would perform routine thruster burns to ensure that it did not come too close to Venus and risk being lost in the atmosphere. But this unique adventure was aimed at achieving the opposite, namely reducing the altitude and allowing an exploration of previously uncharted regions of the atmosphere.

Link To Full Story

Surprising Theorists, Stars Within Middle-Aged Clusters Are Of Similar Age

December 17, 2014 Leave a comment

Image: NASA/ESA Hubble Space Telescope/Fabian RRRR

Image: NASA/ESA Hubble Space Telescope/Fabian RRRR

A close look at the night sky reveals that stars don’t like to be alone; instead, they congregate in clusters, in some cases containing as many as several million stars. Until recently, the oldest of these populous star clusters were considered well understood, with the stars in a single group having formed at different times, over periods of more than 300 million years. Yet new research published online today in the journal Nature suggests that the star formation in these clusters is more complex.

Using data from the Hubble Space Telescope, a team of researchers at the Kavli Institute for Astronomy and Astrophysics (KIAA) at Peking University and the Chinese Academy of Science’s National Astronomical Observatories in Beijing have found that, in large middle-aged clusters at least, all stars appear to be of about the same age.

Link To Full Story