Archive

Archive for May 7, 2015

Hubble Finds Massive Halo Around The Andromeda Galaxy


University of Notre Dame astrophysicist Nicolas Lehner has led a team of scientists who have used NASA’s Hubble Space Telescope to identify an immense halo of gas surrounding the Andromeda Galaxy, the nearest major galaxy to Earth. The halo stretches about a million light-years from Andromeda, halfway to the Milky Way. The discovery will tell astronomers more about the evolution and structure of giant spiral galaxies such as the Milky Way and Andromeda.

“Halos are the gaseous atmospheres of galaxies,” said Lehner, the lead investigator. “The properties of these gaseous halos control the rate at which stars form in galaxies.” The gargantuan halo is estimated to contain at least as much mass in its diffuse gas as half of the stars in the Andromeda Galaxy.

The Andromeda Galaxy, also known as Messier 31 or M31, is the most massive galaxy in the Local Group of galaxies that also includes the Milky Way and about 45 other known galaxies. M31 contains one trillion stars, about double the number of stars in the Milky Way. It is estimated to be about 25 percent more luminous than the Milky Way and lies 2.5 million light-years away.

Link To Full Story

ALMA Discovers Proto Super Star Cluster — A Cosmic ‘Dinosaur Egg’ About To Hatch


Credit: K. Johnson, U.Va.; ALMA (NRAO/ESO/NAOJ)

Credit: K. Johnson, U.Va.; ALMA (NRAO/ESO/NAOJ)

Globular clusters – dazzling agglomerations of up to a million ancient stars – are among the oldest objects in the universe. Though plentiful in and around many galaxies, newborn examples are vanishingly rare and the conditions necessary to create new ones have never been detected, until now.

Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have discovered what may be the first known example of a globular cluster about to be born: an incredibly massive, extremely dense, yet star-free cloud of molecular gas.

“We may be witnessing one of the most ancient and extreme modes of star formation in the universe,” said Kelsey Johnson, an astronomer at the University of Virginia in Charlottesville and lead author on a paper accepted for publication in the Astrophysical Journal. “This remarkable object looks like it was plucked straight out of the very early universe. To discover something that has all the characteristics of a globular cluster, yet has not begun making stars, is like finding a dinosaur egg that’s about to hatch.”

Link To Full Story

Lopsided Star Explosion Holds The Key To Other Supernova Mysteries


Credit: ESA/Hubble & NASA

Credit: ESA/Hubble & NASA

New observations of a recently exploded star are confirming supercomputer model predictions made at Caltech that the deaths of stellar giants are lopsided affairs in which debris and the stars’ cores hurtle off in opposite directions.

While observing the remnant of supernova (SN) 1987A, NASA’s Nuclear Spectroscopic Telescope Array, or NuSTAR, recently detected the unique energy signature of titanium-44, a radioactive version of titanium that is produced during the early stages of a particular type of star explosion, called a Type II, or core-collapse supernova.

“Titanium-44 is unstable. When it decays and turns into calcium, it emits gamma rays at a specific energy, which NuSTAR can detect,” says Fiona Harrison, the Benjamin M. Rosen Professor of Physics at Caltech, and NuSTAR’s principal investigator.

Link To Full Story