Archive

Archive for May 14, 2015

Scientists At Keck Discover The Fluffiest Galaxies


Credit: P. van Dokkum, R. Abraham, J. Brodie

Credit: P. van Dokkum, R. Abraham, J. Brodie

An international team of researchers led by Pieter van Dokkum at Yale University have used the W. M. Keck Observatory to confirm the existence of the most diffuse class of galaxies known in the universe. These “fluffiest galaxies” are nearly as wide as our own Milky Way galaxy – about 60,000 light years – yet harbor only one percent as many stars. The findings were recently published in the Astrophysical Journal Letters.

“If the Milky Way is a sea of stars, then these newly discovered galaxies are like wisps of clouds”, said van Dokkum. “We are beginning to form some ideas about how they were born and it’s remarkable they have survived at all. They are found in a dense, violent region of space filled with dark matter and galaxies whizzing around, so we think they must be cloaked in their own invisible dark matter ‘shields’ that are protecting them from this intergalactic assault.”

Link To Full Story

SGR 1745-2900: Magnetar Near Supermassive Black Hole Delivers Surprises


Credit: NASA/CXC/INAF/F.Coti Zelati et al

Credit: NASA/CXC/INAF/F.Coti Zelati et al

In 2013, astronomers announced they had discovered a magnetar exceptionally close to the supermassive black hole at the center of the Milky Way using a suite of space-borne telescopes including NASA’s Chandra X-ray Observatory.

Magnetars are dense, collapsed stars (called “neutron stars”) that possess enormously powerful magnetic fields. At a distance that could be as small as 0.3 light years (or about 2 trillion miles) from the 4-million-solar mass black hole in the center of our Milky Way galaxy, the magnetar is by far the closest neutron star to a supermassive black hole ever discovered and is likely in its gravitational grip.

A new study uses long-term monitoring observations to reveal that the amount of X-rays from SGR 1745-2900 is dropping more slowly than other previously observed magnetars, and its surface is hotter than expected.

Link To Full Story

Hubble Catches Stellar Exodus In Action


Credits: NASA, ESA, and H. Richer and J. Heyl (University of British Columbia, Vancouver, Canada)

Credits: NASA, ESA, and H. Richer and J. Heyl (University of British Columbia, Vancouver, Canada)

Using NASA’s Hubble Space Telescope, astronomers have captured for the first time snapshots of fledging white dwarf stars beginning their slow-paced, 40-million-year migration from the crowded center of an ancient star cluster to the less populated suburbs.

White dwarfs are the burned-out relics of stars that rapidly lose mass, cool down and shut off their nuclear furnaces. As these glowing carcasses age and shed weight, their orbits begin to expand outward from the star cluster’s packed downtown. This migration is caused by a gravitational tussle among stars inside the cluster. Globular star clusters sort out stars according to their mass, governed by a gravitational billiard ball game where lower mass stars rob momentum from more massive stars. The result is that heavier stars slow down and sink to the cluster’s core, while lighter stars pick up speed and move across the cluster to the edge. This process is known as “mass segregation.” Until these Hubble observations, astronomers had never definitively seen the dynamical conveyor belt in action.

Link To Full Story

Link To Another Story

Against All Odds: Astronomers Baffled By Discovery Of Rare Quasar Quartet


Image: Arrigoni-Battaia & Hennawi / MPIA

Image: Arrigoni-Battaia & Hennawi / MPIA

Using the W.M. Keck observatory in Hawaii, a group of astronomers led by Joseph Hennawi of the Max Planck Institute for Astronomy have discovered the first quadruple quasar: four rare active black holes situated in close proximity to one another. The quartet resides in one of the most massive structures ever discovered in the distant universe, and is surrounded by a giant nebula of cool dense gas. Either the discovery is a one-in-ten-million coincidence, or cosmologists need to rethink their models of quasar evolution and the formation of the most massive cosmic structures. The results are being published in the May 15, 2015 edition of the journal Science.

Hitting the jackpot is one thing, but if you hit the jackpot four times in a row you might wonder if the odds were somehow stacked in your favor. A group of astronomers led by Joseph Hennawi of the Max Planck Institute for Astronomy have found themselves in exactly this situation. They discovered the first known quasar quartet: four quasars, each one a rare object in its own right, in close physical proximity to each other.

Link To Full Story

Left-Handed Cosmic Magnetic Field Could Explain Missing Antimatter


An artist’s concept of the Fermi Gamma ray Space Telescope (FGST) in orbit. Credit: NASA

An artist’s concept of the Fermi Gamma ray Space Telescope (FGST) in orbit. Credit: NASA

The discovery of a ‘left-handed’ magnetic field that pervades the universe could help explain a long standing mystery – the absence of cosmic antimatter. A group of scientists, led by Prof Tanmay Vachaspati from Arizona State University in the United States, with collaborators at the University of Washington and Nagoya University, announce their result in Monthly Notices of the Royal Astronomical Society.

Planets, stars, gas and dust are almost entirely made up of ‘normal’ matter of the kind we are familiar with on Earth. But theory predicts that there should be a similar amount of antimatter, like normal matter, but with the opposite charge. For example, an antielectron or positron has the same mass as its conventional counterpart, but a positive rather than negative charge.

In 2001 Prof Vachaspati published theoretical models to try to solve this puzzle, which predict that the entire universe is filled with helical (screw-like) magnetic fields. He and his team were inspired to search for evidence of these fields in data from the NASA Fermi Gamma ray Space Telescope (FGST).

Link To Full Story