Archive

Archive for May 20, 2015

Galaxy’s Snacking Habits Revealed


Images Credit: Angel Lopez-Sanchez (AAO/MQU) and Baerbel Koribalski (CSIRO)

Images Credit: Angel Lopez-Sanchez (AAO/MQU) and Baerbel Koribalski (CSIRO)

A team of Australian and Spanish astronomers have caught a greedy galaxy gobbling on its neighbours and leaving crumbs of evidence about its dietary past.

Galaxies grow by churning loose gas from their surroundings into new stars, or by swallowing neighbouring galaxies whole. However, they normally leave very few traces of their cannibalistic habits.

A study published today in Monthly Notices of the Royal Astronomical Society (MNRAS) not only reveals a spiral galaxy devouring a nearby compact dwarf galaxy, but shows evidence of its past galactic snacks in unprecedented detail.

Australian Astronomical Observatory (AAO) and Macquarie University astrophysicist, Ángel R. López-Sánchez, and his collaborators have been studying the galaxy NGC 1512 to see if its chemical story matches its physical appearance.

Link To Full Story

Giant Spiraling Molecular Gas Arms As Cradles Of Dense Massive Molecular Cores


Credit: ALMA(ESO/NAOJ/NRAO), H. B. Liu, J. Dale

Credit: ALMA(ESO/NAOJ/NRAO), H. B. Liu, J. Dale

A research team led by Dr. Hauyu Liu at the Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA) observed the luminous OB cluster-forming massive molecular clump G33.92+0.11 with the Atacama Large Millimeter/submillimeter Array (ALMA), and unveiled the fine molecular gas structures deeply embedded at the center of the parent molecular cloud. This finding provides a greatly simplified picture of overall cloud geometry and kinematics, which represents a crucial step forward in the understanding of the upper end of the stellar and molecular core mass functions. The research was published in the April 28 issue of The Astrophysical Journal.

Via ALMA observations, this research for the first time resolved an embedded giant coherent dense gas structure on a several light-year scale. Surprisingly, this dense gas structure presents several spiral arms, which appear like a version of the previously observed spiral arms surrounding the low-mass protobinary, scaled-up by a factor of ~103. These giant spiral arms, and the massive molecular gas cores located at their convergence, are cradles to form the highest mass stars in this stellar cluster.

Link To Full Story

Supernova Hits Star, Results Shocking


Photo Credit: Courtesy of Dan Kasen

Photo Credit: Courtesy of Dan Kasen

The origin of type Ia supernovae, the standard candles used to reveal the presence of dark energy in the universe, is one of astronomy’s most beguiling mysteries. Astronomers know they occur when a white dwarf explodes in a binary system with another star, but the properties of that second star — and how it triggers the explosion — have remained elusive for decades.

Now, a team of astronomers from the intermediate Palomar Transient Factory (iPTF), including those associated with UC Santa Barbara, have witnessed a supernova smashing into a nearby star, shocking it, and creating an ultraviolet glow that reveals the size of the companion. The discovery involved the rapid response and coordination of iPTF, NASA’s Swift satellite and the new capabilities of the Las Cumbres Observatory Global Telescope Network (LCOGT).

Link To Full Story