Archive

Archive for the ‘Brown Dwarves’ Category

Rare Brown Dwarf Discovery Provides Benchmark For Future Exoplanet Research

January 21, 2014 Leave a comment

CREDIT: CREPP ET AL. 2014, APJ

CREDIT: CREPP ET AL. 2014, APJ

A team of researchers led by Justin R. Crepp, the Freimann Assistant Professor of Physics at the University of Notre Dame, has directly imaged a very rare type of brown dwarf that can serve as a benchmark for studying objects with masses that lie between stars and planets. Their paper on the discovery was published recently in Astrophysical Journal.

Initial data came from the TRENDS (TaRgetting bENchmark-objects with Doppler Spectroscopy) high-contrast imaging survey that uses adaptive optics and related technologies to target older, faint objects orbiting nearby stars, and precise measurements were made at the W. M. Keck Observatory on the summit of Mauna Kea, Hawaii. Brown dwarfs emit little light because they do not burn hydrogen and cool rapidly. Crepp said they could provide a link between our understanding of low-mass stars and smaller objects such as planets.

Link To Full Story

Stormy Stars? NASA’s Spitzer Probes Weather On Brown Dwarfs

January 7, 2014 Leave a comment

Artist's concept. Image credit: NASA/JPL-Caltech/University of Western Ontario/Stony Brook University

Artist’s concept. Image credit: NASA/JPL-Caltech/University of Western Ontario/Stony Brook University

Swirling, stormy clouds may be ever-present on cool celestial orbs called brown dwarfs. New observations from NASA’s Spitzer Space Telescope suggest that most brown dwarfs are roiling with one or more planet-size storms akin to Jupiter’s “Great Red Spot.”

“As the brown dwarfs spin on their axis, the alternation of what we think are cloud-free and cloudy regions produces a periodic brightness variation that we can observe,” said Stanimir Metchev of the University of Western Ontario, Canada. “These are signs of patchiness in the cloud cover.”

Brown dwarfs form as stars do, but lack the mass to fuse atoms continually and blossom into full-fledged stars. They are, in some ways, the massive kin to Jupiter.

Scientists think that the cloudy regions on brown dwarfs take the form of torrential storms, accompanied by winds and, possibly, lightning more violent than that at Jupiter or any other planet in our solar system. However, the brown dwarfs studied so far are too hot for water rain; instead, astronomers believe the rain in these storms, like the clouds themselves, is made of hot sand, molten iron or salts.

Link To Full Story

Coldest Brown Dwarfs Blur Lines Between Stars And Planets

September 6, 2013 Leave a comment

Astronomers are constantly on the hunt for ever-colder star-like bodies, and two years ago a new class of objects was discovered by researchers using NASA’s WISE space telescope. However, until now no one has known exactly how cool their surfaces really are – some evidence suggested they could be room temperature.

A new study shows that while these brown dwarfs, sometimes called failed stars, are indeed the coldest known free-floating celestial bodies, they are warmer than previously thought with temperatures about 250-350 degrees Fahrenheit.

To reach such low surface temperatures after cooling for billions of years means that these objects can only have about 5 to 20 times the mass of Jupiter. Unlike the Sun, these objects’ only source of energy is from their gravitational contraction, which depends directly on their mass.

“If one of these objects was found orbiting a star, there is a good chance that it would be called a planet,” says Trent Dupuy, a Hubble Fellow at the Harvard-Smithsonian Center for Astrophysics. But because they probably formed on their own and not in a proto-planetary disk, astronomers still call these objects brown dwarfs even if they are “planetary mass.”

Full Story: http://www.cfa.harvard.edu/news/2013/pr201323.html

NASA Telescopes See Weather Patterns In Brown Dwarf

January 11, 2013 Leave a comment

Artist's illustration. Image credit: NASA/JPL-Caltech

Artist’s illustration. Image credit: NASA/JPL-Caltech

Astronomers using NASA’s Spitzer and Hubble space telescopes have probed the stormy atmosphere of a brown dwarf, creating the most detailed “weather map” yet for this class of cool, star-like orbs. The forecast shows wind-driven, planet-sized clouds enshrouding these strange worlds.

Brown dwarfs form out of condensing gas, as stars do, but lack the mass to fuse hydrogen atoms and produce energy. Instead, these objects, which some call failed stars, are more similar to gas planets with their complex, varied atmospheres. The new research is a stepping-stone toward a better understanding not only of brown dwarfs, but also of the atmospheres of planets beyond our solar system.

“With Hubble and Spitzer, we were able to look at different atmospheric layers of a brown dwarf, similar to the way doctors use medical imaging techniques to study the different tissues in your body,” said Daniel Apai, the principal investigator of the research at the University of Arizona in Tucson, who presented the results at the American Astronomical Society meeting Tuesday in Long Beach, Calif.

Full Story: http://www.jpl.nasa.gov/news/news.php?release=2013-013

From Super To Ultra: Just How Big Can Black Holes Get?

December 24, 2012 Leave a comment

Credit: X-ray: NASA/CXC/Stanford/Hlavacek-Larrondo, J. et al; Optical: NASA/STScI; Radio: NSF/NRAO/VLA

Credit: X-ray: NASA/CXC/Stanford/Hlavacek-Larrondo, J. et al; Optical: NASA/STScI; Radio: NSF/NRAO/VLA

Some of the biggest black holes in the Universe may actually be even bigger than previously thought, according to a study using data from NASA’s Chandra X-ray Observatory. Astronomers have long known about the class of the largest black holes, which they call “supermassive” black holes. Typically, these black holes, located at the centers of galaxies, have masses ranging between a few million and a few billion times that of our sun.

This new analysis has looked at the brightest galaxies in a sample of 18 galaxy clusters, to target the largest black holes. The work suggests that at least ten of the galaxies contain an ultramassive black hole, weighing between 10 and 40 billion times the mass of the sun. Astronomers refer to black holes of this size as “ultramassive” black holes and only know of a few confirmed examples.

The researchers estimated the masses of the black holes in the sample by using an established relationship between masses of black holes, and the amount of X-rays and radio waves they generate. This relationship, called the fundamental plane of black hole activity, fits the data on black holes with masses ranging from 10 solar masses to a billion solar masses.

Full Story: http://www.chandra.harvard.edu/press/12_releases/press_121812.html

NASA’s WISE Survey Uncovers Millions Of Black Holes

August 30, 2012 Leave a comment

NASA’s Wide-field Infrared Survey Explorer (WISE) mission has led to a bonanza of newfound supermassive black holes and extreme galaxies called hot DOGs, or dust-obscured galaxies.

Images from the telescope have revealed millions of dusty black hole candidates across the universe and about 1,000 even dustier objects thought to be among the brightest galaxies ever found. These powerful galaxies, which burn brightly with infrared light, are nicknamed hot DOGs.

“WISE has exposed a menagerie of hidden objects,” said Hashima Hasan, WISE program scientist at NASA Headquarters in Washington. “We’ve found an asteroid dancing ahead of Earth in its orbit, the coldest star-like orbs known and now, supermassive black holes and galaxies hiding behind cloaks of dust.”

Full Story: http://www.nasa.gov/mission_pages/WISE/news/wise20120829.html

WISE Finds Few Brown Dwarfs Close To Home


Astronomers are getting to know the neighbors better. Our sun resides within a spiral arm of our Milky Way galaxy about two-thirds of the way out from the center. It lives in a fairly calm, suburb-like area with an average number of stellar residents. Recently, NASA’s Wide-field Infrared Survey Explorer, or WISE, has been turning up a new crowd of stars close to home: the coldest of the brown dwarf family of “failed” stars.

Now, just as scientists are “meeting and greeting” the new neighbors, WISE has a surprise in store: there are far fewer brown dwarfs around us than predicted.

“This is a really illuminating result,” said Davy Kirkpatrick of the WISE science team at NASA’s Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena. “Now that we’re finally seeing the solar neighborhood with keener, infrared vision, the little guys aren’t as prevalent as we once thought.”

Full Story: http://www.jpl.nasa.gov/news/news.cfm?release=2012-164