Archive for the ‘Cosmology’ Category

Interactive Dark Matter Could Explain Milky Way’s Missing Satellite Galaxies

September 11, 2014 Leave a comment

Scientists believe they have found a way to explain why there are not as many galaxies orbiting the Milky Way as expected. Computer simulations of the formation of our galaxy suggest that there should be many more small galaxies around the Milky Way than are observed through telescopes.

This has thrown doubt on the generally accepted theory of cold dark matter, an invisible and mysterious substance that scientists predict should allow for more galaxy formation around the Milky Way than is seen.

Now cosmologists and particle physicists at the Institute for Computational Cosmology and the Institute for Particle Physics Phenomenology, at Durham University, working with colleagues at LAPTh College & University in France, think they have found a potential solution to the problem.

Writing in the journal Monthly Notices of the Royal Astronomical Society, the scientists suggest that dark matter particles, as well as feeling the force of gravity, could have interacted with photons and neutrinos in the young Universe, causing the dark matter to scatter.

Link To Full Story

Hawaii Scientist Maps, Names Laniakea, Our Home Supercluster Of Galaxies

September 3, 2014 Leave a comment

University of Hawaii at Manoa astronomer R. Brent Tully, who recently shared the 2014 Gruber Cosmology Prize and the 2014 Victor Ambartsumian International Prize, has led an international team of astronomers in defining the contours of the immense supercluster of galaxies containing our own Milky Way. They have named the supercluster “Laniakea,” meaning “immense heaven” in Hawaiian. The paper explaining this work is the cover story of the September 4 issue of the prestigious journal Nature.

Galaxies are not distributed randomly throughout the universe. Instead, they are found in groups, like our own Local Group, that contain dozens of galaxies, and in massive clusters containing hundreds of galaxies, all interconnected in a web of filaments in which galaxies are strung like pearls. Where these filaments intersect, we find huge structures, called “superclusters.” These structures are interconnected, but they have poorly defined boundaries.

Link To Full Story

Mapping Dark Matter, 4.5 Billion light Years Away

Credit: ESA/Hubble, NASA, HST Frontier Fields

Credit: ESA/Hubble, NASA, HST Frontier Fields

Using the NASA/ESA Hubble Space Telescope, an international team of astronomers have mapped the mass within a galaxy cluster more precisely than ever before. Created using observations from Hubble’s Frontier Fields observing programme, the map shows the amount and distribution of mass within MCS J0416.1–2403, a massive galaxy cluster found to be 160 trillion times the mass of the Sun.

The detail in this ‘mass map’ was made possible thanks to the unprecedented depth of data provided by new Hubble observations, and the cosmic phenomenon known as strong gravitational lensing. The team, led by Dr Mathilde Jauzac of Durham University in the UK and the Astrophysics & Cosmology Research Unit in South Africa, publish their results in the journal Monthly Notices of the Royal Astronomical Society.

Measuring the amount and distribution of mass within distant objects in the Universe can be very difficult. A trick often used by astronomers is to explore the contents of large clusters of galaxies by studying the gravitational effects they have on the light from very distant objects beyond them. This is one of the main goals of Hubble’s Frontier Fields, an ambitious observing programme scanning six different galaxy clusters — including MCS J0416.1–2403.

Link To Full Story

Hubble Shows Farthest Lensing Galaxy Yields Clues To Early Universe

Credit: NASA, ESA, K.-V. Tran (Texas A&M University), and K. Wong (Academia Sinica Institute of Astronomy & Astrophysics)

Credit: NASA, ESA, K.-V. Tran (Texas A&M University), and K. Wong (Academia Sinica Institute of Astronomy & Astrophysics)

Astronomers using NASA’s Hubble Space Telescope have unexpectedly discovered the most distant cosmic magnifying glass, produced by a monster elliptical galaxy. Seen here as it looked 9.6 billion years ago, this monster elliptical galaxy breaks the previous record holder by 200 million years. These “lensing” galaxies are so massive that their gravity bends, magnifies, and distorts light from objects behind them, a phenomenon called gravitational lensing.

The object behind the cosmic lens is a tiny spiral galaxy undergoing a rapid burst of star formation. Its light has taken 10.7 billion years to arrive here. Seeing this chance alignment at such a great distance from Earth is a rare find.

Locating more of these distant lensing galaxies will offer insight into how young galaxies in the early universe built themselves up into the massive dark-matter-dominated galaxies of today. Dark matter cannot be seen, but it accounts for the bulk of the universe’s matter.

“When you look more than 9 billion years ago in the early universe, you don’t expect to find this type of galaxy-galaxy lensing at all,” explained lead researcher Kim-Vy Tran of Texas A&M University in College Station. “It’s very difficult to see an alignment between two galaxies in the early universe.”

Link To Full Story

Australian Researchers Pioneer A ‘Google Street View’ Of Galaxies

A new home-grown instrument based on bundles of optical fibres is giving Australian astronomers the first ‘Google street view’ of the cosmos — incredibly detailed views of huge numbers of galaxies.

Developed by researchers at the University of Sydney and the Australian Astronomical Observatory, the optical-fibre bundles can sample the light from up to 60 parts of a galaxy, for a dozen galaxies at a time.

By analysing the light’s spectrum astronomers can learn how gas and stars move within each galaxy, where the young stars are forming and where the old stars live. This will allow them to better understand how galaxies change over time and what drives that change.

“It’s a giant step,” said Dr James Allen of the ARC Centre of Excellence for All-sky Astrophysics(CAASTRO) at the University of Sydney.

“Before, we could study one galaxy at a time in detail, or lots of galaxies at once but in much less detail. Now we have both the numbers and the detail.”

Link To Full Story

Fingerprinting The Formation Of Giant Planets

One of the main models to form giant planets is called “core accretion”. In this scenario, a rocky core forms first by aggregation of solid particles until it reaches a few Earth masses when it becomes massive enough to accrete a gaseous envelope. For the first time, astronomers have detected evidence of this rocky core, the first step in the formation of a giant planet like our own Jupiter.

The astronomers used the Canada-France-Hawaii Telescope (CFHT) to analyze the starlight of the binary stars 16 Cygni A and 16 Cygni B. The system is a perfect laboratory to study the formation of giant planets because the stars were born together and are therefore very similar, and both resemble the Sun. However, observations during the last decades show that only one of the two stars, 16 Cygni B, hosts a giant planet which is about 2.4 times as massive as Jupiter. By decomposing the light from the two stars into their basic components and looking at the difference between the two stars, the astronomers were able to detect signatures left from the planet formation process on 16 Cygni B.

Link To Full Story

Silhouettes Of Early Galaxies Reveal Few Seeds For New Stars

An international team of astronomers has discovered that gas around young galaxies is almost barren, devoid of the seeds from which new stars are thought to form—molecules of hydrogen.

Without starlight to see them directly, the team, which includes Dr. Regina Jorgenson of the Institute for Astronomy at the University of Hawaii at Manoa—observed the young galaxies’ outskirts in silhouette.

They searched for telltale signs of hydrogen molecules absorbing the light from background objects called quasars—supermassive black holes sucking in surrounding material—that glow very brightly.

“Previous experiments led us to expect molecules in about 10 of the 90 young galaxies we observed, but we found just one case,” said Associate Professor Michael Murphy from Swinburne University of Technology in Australia. He co-led the study with Jorgenson.

Link To Full Story

Small, But Plentiful: How The Faintest Galaxies Illuminated The Early Universe

Astronomers investigating behaviour of the universe shortly after the Big Bang have made a surprising discovery: the properties of the early universe are determined by the smallest galaxies. The team report their findings in a paper published today in the journal Monthly Notices of the Royal Astronomical Society.

Shortly after the Big Bang, the universe was ionised: ordinary matter consisted of hydrogen with its positively charged protons stripped of their negatively charged electrons. Eventually, the universe cooled enough for electrons and protons to combine and form neutral hydrogen. This cool gas will eventually form the first stars in the universe but for millions of years, there are no stars. Astronomers therefore aren’t able to see how the cosmos evolved during these ‘dark ages’ using conventional telescopes. The light returned when newly forming stars and galaxies re-ionised the universe during the ‘epoch of re-ionisation’.

Link To Full Story and Video

First Direct Evidence Of Inflation And Primordial Gravitational Waves

Credit: The BICEP2 Collaboration

Credit: The BICEP2 Collaboration

Astronomers announced today that they have acquired the first direct evidence that gravitational waves rippled through our infant universe during an explosive period of growth called inflation. This is the strongest confirmation yet of cosmic inflation theories, which say the universe expanded by 100 trillion trillion times in less than the blink of an eye.

“The implications for this detection stagger the mind,” says Jamie Bock, professor of physics at Caltech, laboratory senior research scientist at the Jet Propulsion Laboratory (JPL) and project co-leader. “We are measuring a signal that comes from the dawn of time.”

Our universe burst into existence in an event known as the Big Bang 13.8 billion years ago. Fractions of a second later, space itself ripped apart, expanding exponentially in an episode known as inflation. Telltale signs of this early chapter in our universe’s history are imprinted in the skies in a relic glow called the cosmic microwave background. Tiny fluctuations in this afterglow provide clues to conditions in the early universe.

Small, quantum fluctuations were amplified to enormous sizes by the inflationary expansion of the universe. This process created density waves that make small differences in temperature across the sky where the universe was denser, eventually condensing into galaxies and clusters of galaxies. But as theorized, inflation should also produce gravitational waves, ripples in space-time propagating throughout the universe. Observations from the BICEP2 telescope at the South Pole now demonstrate that gravitational waves were created in abundance during the early inflation of the universe.

Link To Full Story
Link To Another Story
Link To Another Story And Video

Four New Galaxy Clusters Take Researchers Further Back In Time

February 13, 2014 Leave a comment

pia17934-640_smFour unknown galaxy clusters each potentially containing thousands of individual galaxies have been discovered some 10 billion light years from Earth.

An international team of astronomers, led by Imperial College London, used a new way of combining data from the two European Space Agency satellites, Planck and Herschel, to identify more distant galaxy clusters than has previously been possible. The researchers believe up to 2000 further clusters could be identified using this technique, helping to build a more detailed timeline of how clusters are formed.

Galaxy clusters are the most massive objects in the universe, containing hundreds to thousands of galaxies, bound together by gravity. While astronomers have identified many nearby clusters, they need to go further back in time to understand how these structures are formed. This means finding clusters at greater distances from the Earth.

The light from the most distant of the four new clusters identified by the team has taken over 10 billion years to reach us. This means the researchers are seeing what the cluster looked like when the universe was just three billion years old.

Link To Full Story