Archive for the ‘Exobiology’ Category

NASA Curiosity Rover Team Selects Second Drilling Target On Mars

The team operating NASA’s Curiosity Mars rover has selected a second target rock for drilling and sampling. The rover will set course to the drilling location in coming days.

This second drilling target, called “Cumberland,” lies about nine feet (2.75 meters) west of the rock where Curiosity’s drill first touched Martian stone in February. Curiosity took the first rock sample ever collected on Mars from that rock, called “John Klein.” The rover found evidence of an ancient environment favorable for microbial life. Both rocks are flat, with pale veins and a bumpy surface. They are embedded in a layer of rock on the floor of a shallow depression called “Yellowknife Bay.”

“We know there is some cross-contamination from the previous sample each time,” said Dawn Sumner, a long-term planner for Curiosity’s science team at the University of California at Davis. “For the Cumberland sample, we expect to have most of that cross-contamination come from a similar rock, rather than from very different soil.”

Full Story:


Looking For Life By The Light Of Dying Stars

Because it has no source of energy, a dead star — known as a white dwarf — will eventually cool down and fade away. But circumstantial evidence suggests that white dwarfs can still support habitable planets, says Prof. Dan Maoz of Tel Aviv University’s School of Physics and Astronomy.

Now Prof. Maoz and Prof. Avi Loeb, Director of Harvard University’s Institute for Theory and Computation and a Sackler Professor by Special Appointment at TAU, have shown that, using advanced technology to become available within the next decade, it should be possible to detect biomarkers surrounding these planets — including oxygen and methane — that indicate the presence of life.

Published in the Monthly Notices of the Royal Astronomical Society, the researchers’ “simulated spectrum” demonstrates that the James Webb Space Telescope (JWST), set to be launched by NASA in 2018, will be capable of detecting oxygen and water in the atmosphere of an Earth-like planet orbiting a white dwarf after only a few hours of observation time — much more easily than for an Earth-like planet orbiting a sun-like star.

Full Story:

Universality Of Circular Polarization In Star- And Planet-Forming Regions: Implications For The Origin Of Homochirality Of Life

A research team with Jungmi KWON (GUAS/NAOJ) has performed deep imaging linear and circular polarimetry of the ‘Cat’s Paw Nebula’ (NGC 6334) located in the constellation Scorpius, successfully detecting high degrees of circular polarization (CP) of as much as 22% in NGC 6334. The detected CP degree is the highest ever observed.

In addition, the team has presented the first systematic survey of a combination of linear and circular polarimetry in nine star- and planet-forming regions. As the results of statistical analysis of observations of various star-forming regions, CPs were detected in nine star- and planet-forming regions. Putting it differently, it can be said that CP is a universal feature of star- and planet-forming regions. The team’s findings enable us to obtain information about magnetic fields of circumstellar structures around protostars, which is difficult to obtain using existing methods.

There is a hypothesis that large CP causes homochirality of amino acids and that left-handed amino acids come from outer space. The team’s findings imply an extraterrestrial origin of homochirality of life, from the universality of CP detected in star- and planet-forming regions.

This research is part of an ongoing survey project of wide-field near-infrared (JHKs) imaging polarimetry for star-forming regions (PI: Motohide TAMURA, University of Tokyo/NAOJ). Doctoral student Jungmi KWON, who is contributing to the project, led this research with nine international researchers from Japan and the United Kingdom. The team’s findings were published in the Astrophysical Journal Letter on March 1, 2013.

Full Story:

Has Kepler Found Ideal SETI-Target Planets?

NASA’s Kepler mission has discovered a new planetary system that is home to five small planets around a slightly smaller star than our Sun. Two of them are super-Earth planets, most likely made of rock or ice mixed with rock, which are located in the habitable zone of their host star. This discovery is providing a target for the SETI search, since if life has thrived on these worlds and reached a point where civilization has developed complex technology, it may be detectable.

When the NASA Kepler mission was launched on March 9, 2007, the Delta II rocket was carrying the hope of a large community of scientists who dedicate their work to studying extra-solar planets, planets in orbit around other stars. The Kepler mission’s main scientific objective is exploration of the structure and diversity of planetary systems. It accomplishes this goal by staring almost constantly at a large field composed of about 150,000 stars to detect small dips in brightness due to the transits of a planet.

Full Story:

NASA Team Investigates Complex Chemistry At Titan

Image credit: NASA/JPL-Caltech/Space Science Institute

Image credit: NASA/JPL-Caltech/Space Science Institute

A laboratory experiment at NASA’s Jet Propulsion Laboratory, Pasadena, Calif., simulating the atmosphere of Saturn’s moon Titan suggests complex organic chemistry that could eventually lead to the building blocks of life extends lower in the atmosphere than previously thought. The results now point out another region on the moon that could brew up prebiotic materials. The paper was published in Nature Communications this week.

“Scientists previously thought that as we got closer to the surface of Titan, the moon’s atmospheric chemistry was basically inert and dull,” said Murthy Gudipati, the paper’s lead author at JPL. “Our experiment shows that’s not true. The same kind of light that drives biological chemistry on Earth’s surface could also drive chemistry on Titan, even though Titan receives far less light from the sun and is much colder. Titan is not a sleeping giant in the lower atmosphere, but at least half awake in its chemical activity.”

Scientists have known since NASA’s Voyager mission flew by the Saturn system in the early 1980s that Titan, Saturn’s largest moon, has a thick, hazy atmosphere with hydrocarbons, including methane and ethane. These simple organic molecules can develop into smog-like, airborne molecules with carbon-nitrogen-hydrogen bonds, which astronomer Carl Sagan called “tholins.”

Full Story:

ExoMars: ESA And Roscosmos Set For Mars Missions

ESA and the Russian federal space agency, Roscosmos, have signed a formal agreement to work in partnership on the ExoMars programme towards the launch of two missions in 2016 and 2018.

Establishing whether life ever existed on Mars is one of the outstanding scientific questions of our time and the highest scientific priority of the ExoMars programme.

The partners have agreed a balanced sharing of responsibilities for the different mission elements. ESA will provide the Trace Gas Orbiter (TGO) and the Entry, Descent and Landing Demonstrator Module (EDM) in 2016, and the carrier and rover in 2018.

Roscosmos will be responsible for the 2018 descent module and surface platform, and will provide launchers for both missions. Both partners will supply scientific instruments and will cooperate closely in the scientific exploitation of the missions.

Full Story:

NASA Rover Finds Conditions Once Suited For Ancient Life On Mars

An analysis of a rock sample collected by NASA’s Curiosity rover shows ancient Mars could have supported living microbes.

Scientists identified sulfur, nitrogen, hydrogen, oxygen, phosphorus and carbon — some of the key chemical ingredients for life — in the powder Curiosity drilled out of a sedimentary rock near an ancient stream bed in Gale Crater on the Red Planet last month.

“A fundamental question for this mission is whether Mars could have supported a habitable environment,” said Michael Meyer, lead scientist for NASA’s Mars Exploration Program at the agency’s headquarters in Washington. “From what we know now, the answer is yes.”

Clues to this habitable environment come from data returned by the rover’s Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments. The data indicate the Yellowknife Bay area the rover is exploring was the end of an ancient river system or an intermittently wet lake bed that could have provided chemical energy and other favorable conditions for microbes.

Full Story: