Archive

Archive for the ‘Milky Way’ Category

Rings And Loops In The Stars: Planck’s Stunning New Images


Credit: M. Peel / JCBA / Planck / ESA

Credit: M. Peel / JCBA / Planck / ESA

A ring of dust 200 light years across and a loop covering a third of the sky: two of the results in a new map from the Planck satellite. Dr Mike Peel and Dr Paddy Leahy of the Jodrell Bank Centre for Astrophysics (JCBA) presented the images today at the National Astronomy Meeting (NAM 2015) at Venue Cymru, Llandudno, Wales.

The European Space Agency (ESA) Planck satellite, launched in 2009 to study the ancient light of the Big Bang, has also given us maps of our own Galaxy, the Milky Way, in microwaves (radiation at cm- to mm-wavelengths). Microwaves are generated by electrons spiralling in the Galaxy’s magnetic field at nearly the speed of light (the synchrotron process); by collisions in interstellar plasma, by thermal vibration of interstellar dust grains, and by “anomalous” microwave emission (AME), which may be from spinning dust grains.

The relative strength of these processes changes with wavelength, and are separated using multi-wavelength measurements from Planck, from NASA’s WMAP satellite, and from ground-based radio telescopes, giving maps of each component.

Link To Full Story

UCLA Astronomers Solve Puzzle About Bizarre Object At The Center Of Our Galaxy

November 3, 2014 Leave a comment

For years, astronomers have been puzzled by a bizarre object in the center of the Milky Way that was believed to be a hydrogen gas cloud headed toward our galaxy’s enormous black hole.

Having studied it during its closest approach to the black hole this summer, UCLA astronomers believe that they have solved the riddle of the object widely known as G2.

A team led by Andrea Ghez, professor of physics and astronomy in the UCLA College, determined that G2 is most likely a pair of binary stars that had been orbiting the black hole in tandem and merged together into an extremely large star, cloaked in gas and dust — its movements choreographed by the black hole’s powerful gravitational field. The research is published today in the journal Astrophysical Journal Letters.

Link To Full Story

Link To Another Story

Dark Matter Half What We Thought, Say Scientists

October 9, 2014 Leave a comment

A new measurement of dark matter in the Milky Way has revealed there is half as much of the mysterious substance as previously thought.

Australian astronomers used a method developed almost 100 years ago to discover that the weight of dark matter in our own galaxy is 800 000 000 000 (or 8 x 1011) times the mass of the Sun.

They probed the edge of the Milky Way, looking closely, for the first time, at the fringes of the galaxy about 5 million trillion kilometres from Earth.

Astrophysicist Dr Prajwal Kafle, from The University of Western Australia node of the International Centre for Radio Astronomy Research, said we have known for a while that most of the Universe is hidden.

Link To Full Story

Hidden Nurseries In The Milky Way


APEX, the Atacama Pathfinder Experiment, is a telescope of 12 m diameter at an exceptional site on Earth: the Chajnantor plateau is located 5100 m above sea level in the Atacama desert in Chile. It was used to map the whole inner part of the plane of our Milky Way, ranging from the Southern constellations of Vela and Carina all the way to the Northern constellations of Aquila and the great Cygnus rift. The APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) mapped the Galactic Plane at a wavelength of 0.87 mm. Cold interstellar dust emits strongly in this part of the electromagnetic spectrum, called the sub-millimeter range, while it is blocking visible and infrared wavelengths. The survey has revealed an unprecedented number of cold dense clumps of gas and dust as the cradles of massive stars, thus providing a complete view of their birthplaces in the Milky Way. Based on this census, an international team of scientists led by Timea Csengeri from the Max Planck Institute for Radio Astronomy in Bonn has estimated the time scale for these nurseries to grow stars. This has been found to be a very fast process: with only 75,000 years on average it is much shorter than the corresponding time scales typically found for nurseries of lower mass stars.

Link To Full Story

Dramatic New Portrait Helps Define Milky Way’s Shape, Contents


Credit: NASA/JPL-Caltech/University of Wisconsin-Madison

Credit: NASA/JPL-Caltech/University of Wisconsin-Madison

Using more than 2 million images collected by NASA’s orbiting Spitzer Space Telescope, a team of Wisconsin scientists has stitched together a dramatic 360-degree portrait of the Milky Way, providing new details of our galaxy’s structure and contents.

The new composite picture, using infrared images gathered over the last decade, was unveiled today at a TED conference in Vancouver. The galactic portrait provides an unprecedented look at the plane of our galaxy, using the infrared imagers aboard Spitzer to cut through the interstellar dust that obscures the view in visible light.

“For the first time, we can actually measure the large-scale structure of the galaxy using stars rather than gas,” explains Edward Churchwell, a University of Wisconsin-Madison professor of astronomy whose group compiled the new picture, which looks at a thin slice of the galactic plane. “We’ve established beyond the shadow of a doubt that our galaxy has a large bar structure that extends halfway out to the sun’s orbit. We know more about where the Milky Way’s spiral arms are.”

Link To Full Story

Milky Way Amidst A ‘Council Of Giants’


We live in a galaxy known as the Milky Way – a vast conglomeration of 300 billion stars, planets whizzing around them, and clouds of gas and dust floating in between.

Though it has long been known that the Milky Way and its orbiting companion Andromeda are the dominant members of a small group of galaxies, the Local Group, which is about 3 million light years across, much less was known about our immediate neighbourhood in the universe.

Now, a new paper by York University Physics & Astronomy Professor Marshall McCall, published today in the journal Monthly Notices of the Royal Astronomical Society, maps out bright galaxies within 35-million light years of the Earth, offering up an expanded picture of what lies beyond our doorstep.

“All bright galaxies within 20 million light years, including us, are organized in a ‘Local Sheet’ 34-million light years across and only 1.5-million light years thick,” says McCall. “The Milky Way and Andromeda are encircled by twelve large galaxies arranged in a ring about 24-million light years across – this ‘Council of Giants’ stands in gravitational judgment of the Local Group by restricting its range of influence.”

Link To Full Story

Gamma-Rays Tighten Window On Dark Matter Theories

February 28, 2014 Leave a comment

Observed data fitting the dark matter component, after subtracting all other components toward the Galactic Center.

Observed data fitting the dark matter component, after subtracting all other components toward the Galactic Center.

UC Irvine astrophysicists report that gamma-ray photons observed from the center of the Milky Way Galaxy are consistent with the intriguing possibility of dark matter annihilation, according to research submitted to the journal Physical Review D.

Kevork Abazajian, Nicolas Canac, Shunsaku Horiuchi and Manoj Kaplinghat analyzed data from NASA’s space-borne Fermi Gamma-ray Space Telescope and found that only a narrow range of dark matter models can produce an excess of gamma rays coming from the Milky Way. These gamma rays could be produced as particles of dark matter annihilate one another.

“The data provides a better-than 10 percent precise determination of the dark matter’s particle mass with the best estimates we have of what else is going on in the Galactic Center,” says Abazajian.

Link To Full Story

Liftoff For Europe’s Billion-Star Surveyor

December 19, 2013 1 comment

Copyright ESA–S. Corvaja, 2013

Copyright ESA–S. Corvaja, 2013

19 December 2013 ESA PR 44-2013: ESA’s Gaia mission blasted off this morning on a Soyuz rocket from Europe’s Spaceport in Kourou, French Guiana, on its exciting mission to study a billion suns.

Gaia is destined to create the most accurate map yet of the Milky Way. By making accurate measurements of the positions and motions of 1% of the total population of roughly 100 billion stars, it will answer questions about the origin and evolution of our home Galaxy.

The Soyuz launcher, operated by Arianespace, lifted off at 09:12 GMT (10:12 CET). About ten minutes later, after separation of the first three stages, the Fregat upper stage ignited, delivering Gaia into a temporary parking orbit at an altitude of 175 km.

Link To Full Story
Link To Another Story

The Inside Of Our Milky Way In 3D

September 19, 2013 Leave a comment

Scientists at the Max Planck Institute for Extraterrestrial Physics have produced the first detailed three-dimensional map of the stars that form the inner regions of our Milky Way, using publicly available VVV survey data from the science archive facility at ESO. They find a box/peanut shaped bulge with an elongated bar and a prominent X-structure, which had been hinted at in previous studies. This indicates that the Milky Way was originally a pure disk of stars, which then formed a thin bar, before buckling into the box/peanut shape seen today. The new map can be used for more detailed studies of the dynamics and evolution of our Milky Way.

Our Sun resides right inside the galactic disk, about 27 000 light-years from the core of our Milky Way. Due to the obscuring effects of dense gas and dust clouds it is therefore difficult to get accurate information about the shape and properties of the inner regions of our galaxy. By using a large number of so-called “red clump” giant stars from the new VVV survey scientists at the Max Planck Institute for Extraterrestrial Physics have now produced a three-dimensional map of the galactic bulge.

Link To Full Story.

Herschel Finds Hot Gas On The Menu For Milky Way’s Black Hole


ESA’s Herschel space observatory has made detailed observations of surprisingly hot molecular gas that may be orbiting or falling towards the supermassive black hole lurking at the centre of our Milky Way galaxy.

Our local black hole is located in a region known as Sagittarius A* – Sgr A* – after a nearby radio source. It has a mass about four million times that of our Sun and lies around 26 000 light-years away from the Solar System.

Herschel has detected a great variety of simple molecules at the Milky Way’s heart, including carbon monoxide, water vapour and hydrogen cyanide. By analysing the signature from these molecules, astronomers have been able to probe some of the fundamental properties of the interstellar gas surrounding the black hole.

“Herschel has resolved the far-infrared emission within just 1 light-year of the black hole, making it possible for the first time at these wavelengths to separate emission due to the central cavity from that of the surrounding dense molecular disc,” says Javier Goicoechea of the Centro de Astrobiología, Spain, and lead author of the paper reporting the results.

The biggest surprise was quite how hot the molecular gas in the innermost central region of the Galaxy gets. At least some of it is around 1000ºC, much hotter than typical interstellar clouds, which are usually only a few tens of degrees above the –273ºC of absolute zero.

Full Story: http://www.esa.int/Our_Activities/Space_Science/Herschel/Herschel_finds_hot_gas_on_the_menu_for_Milky_Way_s_black_hole