Archive

Archive for the ‘Curiosity’ Category

Science Benefits From Diverse Landing Area Of NASA Mars Rover

October 2, 2013 1 comment

Image credit: NASA/JPL-Caltech/Malin Space Science Systems

Image credit: NASA/JPL-Caltech/Malin Space Science Systems

NASA’s Curiosity rover is revealing a great deal about Mars, from long-ago processes in its interior to the current interaction between the Martian surface and atmosphere.

Examination of loose rocks, sand and dust has provided new understanding of the local and global processes on Mars. Analysis of observations and measurements by the rover’s science instruments during the first four months after the August 2012 landing are detailed in five reports in the Sept. 27 edition of the journal Science.

A key finding is that water molecules are bound to fine-grained soil particles, accounting for about 2 percent of the particles’ weight at Gale Crater where Curiosity landed. This result has global implications, because these materials are likely distributed around the Red Planet.

Curiosity also has completed the first comprehensive mineralogical analysis on another planet using a standard laboratory method for identifying minerals on Earth. The findings about both crystalline and non-crystalline components in soil provide clues to the planet’s volcanic history.

Link To Full Story.

Advertisements

NASA Rover Gets Movie As A Mars Moon Passes Another

August 15, 2013 Leave a comment

The larger of the two moons of Mars, Phobos, passes directly in front of the other, Deimos, in a new series of sky-watching images from NASA’s Mars rover Curiosity.

Large craters on Phobos are clearly visible in these images from the surface of Mars. No previous images from missions on the surface caught one moon eclipsing the other.

Large craters on Phobos are clearly visible in these images from the surface of Mars. No previous images from missions on the surface caught one moon eclipsing the other.

These observations of Phobos and Deimos help researchers make knowledge of the moons’ orbits even more precise.

“The ultimate goal is to improve orbit knowledge enough that we can improve the measurement of the tides Phobos raises on the Martian solid surface, giving knowledge of the Martian interior,” said Mark Lemmon of Texas A&M University, College Station. He is a co-investigator for use of Curiosity’s Mastcam. “We may also get data good enough to detect density variations within Phobos and to determine if Deimos’ orbit is systematically changing.”

Full Story and Video: http://www.jpl.nasa.gov/news/news.php?release=2013-253

Reports Detail Mars Rover Clues To Atmosphere’s Past


A pair of new papers report measurements of the Martian atmosphere’s composition by NASA’s Curiosity rover, providing evidence about loss of much of Mars’ original atmosphere.

Curiosity’s Sample Analysis at Mars (SAM) suite of laboratory instruments inside the rover has measured the abundances of different gases and different isotopes in several samples of Martian atmosphere. Isotopes are variants of the same chemical element with different atomic weights due to having different numbers of neutrons, such as the most common carbon isotope, carbon-12, and a heavier stable isotope, carbon-13.

“As atmosphere was lost, the signature of the process was embedded in the isotopic ratio,” said Paul Mahaffy of NASA Goddard Space Flight Center, Greenbelt, Md. He is the principal investigator for SAM and lead author of one of the two papers about Curiosity results in the July 19 issue of the journal Science.

Full Story: http://www.jpl.nasa.gov/news/news.php?release=2013-226

Billion-Pixel View Of Mars Comes From Curiosity Rover


Image credit: NASA/JPL-Caltech/MSSS

Image credit: NASA/JPL-Caltech/MSSS

A billion-pixel view from the surface of Mars, from NASA’s Mars rover Curiosity, offers armchair explorers a way to examine one part of the Red Planet in great detail.

The first NASA-produced view from the surface of Mars larger than one billion pixels stitches together nearly 900 exposures taken by cameras onboard Curiosity and shows details of the landscape along the rover’s route.

The full-circle scene surrounds the site where Curiosity collected its first scoops of dusty sand at a windblown patch called “Rocknest,” and extends to Mount Sharp on the horizon.

“It gives a sense of place and really shows off the cameras’ capabilities,” said Bob Deen of the Multi-Mission Image Processing Laboratory at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “You can see the context and also zoom in to see very fine details.”

Full Story and Image Links: http://www.jpl.nasa.gov/news/news.php?release=2013-205

SwRI-Led Team Calculates The Radiation Exposure Associated With A Trip To Mars


On November 26, 2011, the Mars Science Laboratory began a 253-day, 560-million-kilometer journey to deliver the Curiosity rover to the Red Planet. En route, the Southwest Research Institute-led Radiation Assessment Detector (RAD) made detailed measurements of the energetic particle radiation environment inside the spacecraft, providing important insights for future human missions to Mars.

“In terms of accumulated dose, it’s like getting a whole-body CT scan once every five or six days,” said Dr. Cary Zeitlin, a principal scientist in SwRI’s Space Science and Engineering Division and lead author of Measurements of Energetic Particle Radiation in Transit to Mars on the Mars Science Laboratory, scheduled for publication in the journal Science on May 31.

“Understanding the radiation environment inside a spacecraft carrying humans to Mars or other deep space destinations is critical for planning future crewed missions,” Zeitlin said. “Based on RAD measurements, unless propulsion systems advance rapidly, a large share of mission radiation exposure will be during outbound and return travel, when the spacecraft and its inhabitants will be exposed to the radiation environment in interplanetary space, shielded only by the spacecraft itself.”

Full Story: http://www.swri.org/9what/releases/2013/rad.htm#.UagaCH4o5hF

Rounded Stones On Mars Evidence Of Flowing Water


Image Credit: NASA/JPL-Caltech

Image Credit: NASA/JPL-Caltech

Observations by NASA’s Mars rover Curiosity have revealed areas with gravel and pebbles that are characteristic of a former riverbed. Researchers, including members of the Niels Bohr Institute, have analysed their shapes and sizes and the rounded pebbles clearly show that there has been flowing water on Mars. The results are published in the scientific journal, Science.

The Mars rover’s stereo camera took pictures of a few areas with densely packed pebbles, cemented together like concrete. The image field of an area named Hottah was a mosaic of approximately 1.4 meters x 80 centimeters. But when the picture is taken at an angle from the camera arm’s two meter high mast down towards the ground-level, it gives a slightly distorted view in which the size of the rocks depend on their location in the image frame. To remedy this, the researcher first had to process the image so the proportions are comparable.

“Next, we divided the image into smaller fields of 10 mm and analysed the gravel, which consists of coarse grains of sand around 1/3 mm. We examined the pebbles which are between 4 and 40 mm in greater detail. Altogether we made a thorough analysis of 515 pebbles”, explains Asmus Koefoed, research assistant in the Mars Group at the Niels Bohr Institute at the University of Copenhagen.

Full Story: http://www.nbi.ku.dk/english/news/news13/rounded-stones-on-mars-evidence-of-flowing-water/

NASA Curiosity Rover Team Selects Second Drilling Target On Mars


The team operating NASA’s Curiosity Mars rover has selected a second target rock for drilling and sampling. The rover will set course to the drilling location in coming days.

This second drilling target, called “Cumberland,” lies about nine feet (2.75 meters) west of the rock where Curiosity’s drill first touched Martian stone in February. Curiosity took the first rock sample ever collected on Mars from that rock, called “John Klein.” The rover found evidence of an ancient environment favorable for microbial life. Both rocks are flat, with pale veins and a bumpy surface. They are embedded in a layer of rock on the floor of a shallow depression called “Yellowknife Bay.”

“We know there is some cross-contamination from the previous sample each time,” said Dawn Sumner, a long-term planner for Curiosity’s science team at the University of California at Davis. “For the Cumberland sample, we expect to have most of that cross-contamination come from a similar rock, rather than from very different soil.”

Full Story: http://www.jpl.nasa.gov/news/news.php?release=2013-159