Archive

Posts Tagged ‘astrophysics’

Scientists At Keck Discover The Fluffiest Galaxies


Credit: P. van Dokkum, R. Abraham, J. Brodie

Credit: P. van Dokkum, R. Abraham, J. Brodie

An international team of researchers led by Pieter van Dokkum at Yale University have used the W. M. Keck Observatory to confirm the existence of the most diffuse class of galaxies known in the universe. These “fluffiest galaxies” are nearly as wide as our own Milky Way galaxy – about 60,000 light years – yet harbor only one percent as many stars. The findings were recently published in the Astrophysical Journal Letters.

“If the Milky Way is a sea of stars, then these newly discovered galaxies are like wisps of clouds”, said van Dokkum. “We are beginning to form some ideas about how they were born and it’s remarkable they have survived at all. They are found in a dense, violent region of space filled with dark matter and galaxies whizzing around, so we think they must be cloaked in their own invisible dark matter ‘shields’ that are protecting them from this intergalactic assault.”

Link To Full Story

SGR 1745-2900: Magnetar Near Supermassive Black Hole Delivers Surprises


Credit: NASA/CXC/INAF/F.Coti Zelati et al

Credit: NASA/CXC/INAF/F.Coti Zelati et al

In 2013, astronomers announced they had discovered a magnetar exceptionally close to the supermassive black hole at the center of the Milky Way using a suite of space-borne telescopes including NASA’s Chandra X-ray Observatory.

Magnetars are dense, collapsed stars (called “neutron stars”) that possess enormously powerful magnetic fields. At a distance that could be as small as 0.3 light years (or about 2 trillion miles) from the 4-million-solar mass black hole in the center of our Milky Way galaxy, the magnetar is by far the closest neutron star to a supermassive black hole ever discovered and is likely in its gravitational grip.

A new study uses long-term monitoring observations to reveal that the amount of X-rays from SGR 1745-2900 is dropping more slowly than other previously observed magnetars, and its surface is hotter than expected.

Link To Full Story

Against All Odds: Astronomers Baffled By Discovery Of Rare Quasar Quartet


Image: Arrigoni-Battaia & Hennawi / MPIA

Image: Arrigoni-Battaia & Hennawi / MPIA

Using the W.M. Keck observatory in Hawaii, a group of astronomers led by Joseph Hennawi of the Max Planck Institute for Astronomy have discovered the first quadruple quasar: four rare active black holes situated in close proximity to one another. The quartet resides in one of the most massive structures ever discovered in the distant universe, and is surrounded by a giant nebula of cool dense gas. Either the discovery is a one-in-ten-million coincidence, or cosmologists need to rethink their models of quasar evolution and the formation of the most massive cosmic structures. The results are being published in the May 15, 2015 edition of the journal Science.

Hitting the jackpot is one thing, but if you hit the jackpot four times in a row you might wonder if the odds were somehow stacked in your favor. A group of astronomers led by Joseph Hennawi of the Max Planck Institute for Astronomy have found themselves in exactly this situation. They discovered the first known quasar quartet: four quasars, each one a rare object in its own right, in close physical proximity to each other.

Link To Full Story

Left-Handed Cosmic Magnetic Field Could Explain Missing Antimatter


An artist’s concept of the Fermi Gamma ray Space Telescope (FGST) in orbit. Credit: NASA

An artist’s concept of the Fermi Gamma ray Space Telescope (FGST) in orbit. Credit: NASA

The discovery of a ‘left-handed’ magnetic field that pervades the universe could help explain a long standing mystery – the absence of cosmic antimatter. A group of scientists, led by Prof Tanmay Vachaspati from Arizona State University in the United States, with collaborators at the University of Washington and Nagoya University, announce their result in Monthly Notices of the Royal Astronomical Society.

Planets, stars, gas and dust are almost entirely made up of ‘normal’ matter of the kind we are familiar with on Earth. But theory predicts that there should be a similar amount of antimatter, like normal matter, but with the opposite charge. For example, an antielectron or positron has the same mass as its conventional counterpart, but a positive rather than negative charge.

In 2001 Prof Vachaspati published theoretical models to try to solve this puzzle, which predict that the entire universe is filled with helical (screw-like) magnetic fields. He and his team were inspired to search for evidence of these fields in data from the NASA Fermi Gamma ray Space Telescope (FGST).

Link To Full Story

Water Was Plentiful In The Early Universe


water_225x225_smAstronomers have long held that water — two hydrogen atoms and an oxygen atom — was a relative latecomer to the universe. They believed that any element heavier than helium had to have been formed in the cores of stars and not by the Big Bang itself. Since the earliest stars would have taken some time to form, mature, and die, it was presumed that it took billions of years for oxygen atoms to disperse throughout the universe and attach to hydrogen to produce the first interstellar “water.”

New research poised for publication in Astrophysical Journal Letters by Tel Aviv University and Harvard University researchers reveals that the universe’s first reservoirs of water may have formed much earlier than previously thought — less than a billion years after the Big Bang, when the universe was only 5 percent of its current age. According to the study, led by PhD student Shmuel Bialy and his advisor Prof. Amiel Sternberg of the Department of Astrophysics at TAU’s School of Physics and Astronomy, in collaboration with Prof. Avi Loeb of Harvard’s Astronomy Department, the timing of the formation of water in the universe bears important implications for the question of when life itself originated.

Link To Full Story

Subaru Telescope Observers Superflare Stars With Large Starspots


Artificial image of a superflare star. Credit: Kyoto University

Artificial image of a superflare star. Credit: Kyoto University

A team of astronomers has used the High Dispersion Spectrograph on the Subaru Telescope to conduct spectroscopic observations of Sun-like “superflare” stars first observed and cataloged by the Kepler Space Telescope. The investigations focused on the detailed properties of these stars and confirmed that Sun-like stars with large starspots can experience superflares.

The team, made up of astronomers from Kyoto University, University of Hyogo, the National Astronomical Observatory of Japan (NAOJ), and Nagoya University, targeted a set of solar-type stars emitting very large flares that release total energies 10-10000 times greater than the biggest solar flares. Solar flares are energetic explosions in the solar atmosphere and are thought to occur by intense releases of magnetic energy around the sunspots. Large flares often cause massive bursts of high-speed plasma called coronal mass ejections (CMEs), can lead to geomagnetic storms on Earth. Such storms can have severe impacts on our daily life by affecting such systems as communications and power grids.

Link To Full Story

Delta Cephei’s Hidden Companion


Bow shock around star Delta Cephei. Credit: NASA/JPL-Caltech/M

Bow shock around star Delta Cephei. Credit: NASA/JPL-Caltech/M

To measure distances in the universe, astronomers use cepheids, a family of variable stars whose luminosity varies with time. Their role as distance calibrators has brought them attention from researchers for more than a century. While it was thought that nearly everything was known about the prototype of cepheids, named Delta Cephei, a team of researchers at the University of Geneva (UNIGE), the Johns Hopkins University, and the European Space Agency (ESA), have now discovered that this star has a hidden companion. They have published an article about the discovery in The Astrophysical Journal.

Delta Cephei, prototype of the cepheids, which has given its name to all similar variable stars, was discovered 230 years ago by the English astronomer John Goodricke. Since the early 20th century, scientists have been interested in measuring cosmic distances using a relationship between these stars’ periods of pulsation and their luminosities (intrinsic brightness), discovered by the American Henrietta Leavitt. Today, researchers from the Astronomical Observatory of UNIGE, Johns Hopkins University and the ESA show that Delta Cephei is, in fact, a double star, made up of a cepheid-type variable star and a companion that had thus far escaped detection, probably because of its low luminosity. Yet, pairs of stars, called binaries, complicate the calibration of the period-luminosity relationship, and can bias the measurement of distances. This is a surprising discovery, since Delta Cephei is one of the most studied stars, of which scientists thought they knew almost everything.

Link To Full Story

Weather On Alien Worlds Uncovered: Cloudy Mornings & Hot Afternoons

May 12, 2015 1 comment

TORONTO, May 12, 2015 — We may complain a lot about the weather on earth but perhaps we are much better off here than on some alien worlds, where the daily forecast is cloudy, overcast skies in the morning and scorching heat in the afternoon.

A team of international astronomers including York University scientist Professor Ray Jayawardhana have uncovered evidence of daily weather cycles on six extra-solar planets using sensitive observations from the Kepler space telescope.

“Despite the discovery of thousands of extra-solar planets, what these far-off worlds look like is still shrouded in mystery,” says lead author Lisa Esteves, graduate student at the University of Toronto.

In their paper entitled “Changing Phases of Alien Worlds: Probing Atmospheres of Kepler Planets with High-Precision Photometry” published today in the Astrophysical Journal, the team analyzed all 14 Kepler planets known to exhibit phase variations, and found indications of cloudy mornings on four and hot, clear afternoons on two others.

Link To Full Story

Lopsided Star Explosion Holds The Key To Other Supernova Mysteries


Credit: ESA/Hubble & NASA

Credit: ESA/Hubble & NASA

New observations of a recently exploded star are confirming supercomputer model predictions made at Caltech that the deaths of stellar giants are lopsided affairs in which debris and the stars’ cores hurtle off in opposite directions.

While observing the remnant of supernova (SN) 1987A, NASA’s Nuclear Spectroscopic Telescope Array, or NuSTAR, recently detected the unique energy signature of titanium-44, a radioactive version of titanium that is produced during the early stages of a particular type of star explosion, called a Type II, or core-collapse supernova.

“Titanium-44 is unstable. When it decays and turns into calcium, it emits gamma rays at a specific energy, which NuSTAR can detect,” says Fiona Harrison, the Benjamin M. Rosen Professor of Physics at Caltech, and NuSTAR’s principal investigator.

Link To Full Story

How A New Telescope Will Measure The Expansion Of The Universe


For the past several years, scientists at the U.S. Department of Energy’s Lawrence Berkeley National Lab (Berkeley Lab) have been planning the construction of and developing technologies for a very special instrument that will create the most extensive three-dimensional map of the universe to date. Called DESI for Dark Energy Spectroscopic Instrument, this project will trace the growth history of the universe rather like the way you might track your child’s height with pencil marks climbing up a doorframe. But DESI will start from the present and work back into the past.

DESI will make a full 3D map pinpointing galaxies’ locations across the universe. The map, unprecedented in its size and scope, will allow scientists to test theories of dark energy, the mysterious force that appears to cause the accelerating expansion and stretching of the universe first discovered in observations of supernovae by groups led by Saul Perlmutter at Berkeley Lab and by Brian Schmidt, now at Australian National University, and Adam Riess, now at Johns Hopkins University.

Link To Full Story