Posts Tagged ‘Blazars’

Black Hole ‘Batteries’ Keep Blazars Going And Going

Astronomers studying two classes of black-hole-powered galaxies monitored by NASA’s Fermi Gamma-ray Space Telescope have found evidence that they represent different sides of the same cosmic coin. By unraveling how these objects, called blazars, are distributed throughout the universe, the scientists suggest that apparently distinctive properties defining each class more likely reflect a change in the way the galaxies extract energy from their central black holes.

“We can think of one blazar class as a gas-guzzling car and the other as an energy-efficient electric vehicle,” said lead researcher Marco Ajello, an astrophysicist at Clemson University in South Carolina. “Our results suggest that we’re actually seeing hybrids, which tap into the energy of their black holes in different ways as they age.”

Active galaxies possess extraordinarily luminous cores powered by black holes containing millions or even billions of times the mass of the sun. As gas falls toward these supermassive black holes, it settles into an accretion disk and heats up. Near the brink of the black hole, through processes not yet well understood, some of the gas blasts out of the disk in jets moving in opposite directions at nearly the speed of light.

Blazars are the highest-energy type of active galaxy and emit light across the spectrum, from radio to gamma rays. They make up more than half of the discrete gamma-ray sources cataloged by Fermi’s Large Area Telescope, which has detected more than 1,000 to date. Astronomers think blazars appear so intense because they happen to tip our way, bringing one jet nearly into our line of sight. Looking almost directly down the barrel of a particle jet moving near the speed of light, emissions from the jet and the region producing it dominate our view.

Link To Full Story And Video


NASA’s Fermi Makes First Gamma-ray Study Of A Gravitational Lens

January 7, 2014 Leave a comment

An international team of astronomers, using NASA’s Fermi observatory, has made the first-ever gamma-ray measurements of a gravitational lens, a kind of natural telescope formed when a rare cosmic alignment allows the gravity of a massive object to bend and amplify light from a more distant source.

This accomplishment opens new avenues for research, including a novel way to probe emission regions near supermassive black holes. It may even be possible to find other gravitational lenses with data from the Fermi Gamma-ray Space Telescope.

“We began thinking about the possibility of making this observation a couple of years after Fermi launched, and all of the pieces finally came together in late 2012,” said Teddy Cheung, lead scientist for the finding and an astrophysicist at the Naval Research Laboratory in Washington.

In September 2012, Fermi’s Large Area Telescope (LAT) detected a series of bright gamma-ray flares from a source known as B0218+357, located 4.35 billion light-years from Earth in the direction of a constellation called Triangulum. These powerful flares, in a known gravitational lens system, provided the key to making the lens measurement.

Link To Full Story

Distant Blazar Is A High-Energy Astrophysics Puzzle

Blazars are the brightest of active galactic nuclei, and many emit very high-energy gamma rays. New observations of the blazar known as PKS 1424+240 show that it is the most distant known source of very high-energy gamma rays, but its emission spectrum now appears highly unusual in light of the new data.

A team led by physicists at the University of California, Santa Cruz, used data from the Hubble Space Telescope to set a lower limit for the blazar’s redshift (z ≥ 0.6035), which corresponds to a distance of at least 7.4 billion light-years. Over such a great distance, a substantial proportion of the gamma rays should be absorbed by the extragalactic background light, but calculations that account for the expected absorption yield an unexpected emission spectrum for the blazar.

“We’re seeing an extraordinarily bright source which does not display the characteristic emission expected from a very high-energy blazar,” said Amy Furniss, a graduate student at the Santa Cruz Institute for Particle Physics (SCIPP) at UCSC and first author of a paper describing the new findings. The paper has been accepted for publication in Astrophysical Journal Letters and is currently posted on

Full Story:

NASA’s WISE Mission Sees Skies Ablaze With Blazars

April 16, 2012 Leave a comment

Image credit: NASA/JPL-Caltech

Image credit: NASA/JPL-Caltech

Astronomers are actively hunting a class of supermassive black holes throughout the universe called blazars thanks to data collected by NASA’s Wide-field Infrared Survey Explorer (WISE). The mission has revealed more than 200 blazars and has the potential to find thousands more.

Blazars are among the most energetic objects in the universe. They consist of supermassive black holes actively “feeding,” or pulling matter onto them, at the cores of giant galaxies. As the matter is dragged toward the supermassive hole, some of the energy is released in the form of jets traveling at nearly the speed of light. Blazars are unique because their jets are pointed directly at us.

“Blazars are extremely rare because it’s not too often that a supermassive black hole’s jet happens to point towards Earth,” said Francesco Massaro of the Kavli Institute for Particle Astrophysics and Cosmology near Palo Alto, Calif., and principal investigator of the research, published in a series of papers in the Astrophysical Journal. “We came up with a crazy idea to use WISE’s infrared observations, which are typically associated with lower-energy phenomena, to spot high-energy blazars, and it worked better than we hoped.”

Full Story: