Archive

Posts Tagged ‘craters’

Press Release: Cosmoquest’s “Moonmappers” Shows Everyday People Can MAP The Moon


CQmoonX_smA team of scientists working with the CosmoQuest virtual research facility (CosmoQuest.org) has demonstrated that it is possible for everyday people to map the Moon with the same quality as a group of experienced professionals. These crowd-sourced results are being published in the journal Icarus and highlight the ability of citizen scientists to advance planetary research. CosmoQuest is a second-generation citizen science site run out of Southern Illinois University Edwardsville (SIUE) by Dr Pamela L. Gay.

While “crowdsourcing science” may sound like they are handing out lab sets and white coats, CosmoQuest has actually done something much more impactful.

They handed over the moon.

CosmoQuest’s MoonMappers research portal invites the public to learn about the lunar surface and aid professional researchers in mapping craters and other features on the Moon. MoonMappers is led by researchers Stuart Robbins (University of Colorado – Boulder) and Irene Antonenko (the Planetary Institute of Toronto). CosmoQuest community members are the first citizen scientists to demonstrate volunteers’ ability to accurately identify planetary surface features.

Link To Full Story

Advertisements

Big Ice May Explain Mars’ Double-Layer Craters


Credit: NASA

Credit: NASA

Geologists from Brown University have developed a promising new explanation for a mysterious type of crater on the surface on Mars.

Double-layered ejecta craters or DLEs, like other craters, are surrounded by debris excavated by an impactor. What makes DLEs different is that the debris forms two distinct layers — a large outer layer with a smaller inner layer sitting on top. These distinctive craters were first documented in data returned from the Viking missions to Mars in the 1970s, and scientists have been trying ever since to figure out how the double-layer pattern forms.

A new study by Brown graduate student David Kutai Weiss and James W. Head, professor of geological science, suggests that DLEs are the result of impacts onto a surface that was covered by a layer of glacial ice tens of meters thick.

Full Story: http://news.brown.edu/pressreleases/2013/08/craters

Study Supports Theory of Extraterrestrial Impact


A 16-member international team of researchers that includes James Kennett, professor of earth science at UC Santa Barbara, has identified a nearly 13,000-year-old layer of thin, dark sediment buried in the floor of Lake Cuitzeo in central Mexico. The sediment layer contains an exotic assemblage of materials, including nanodiamonds, impact spherules, and more, which, according to the researchers, are the result of a cosmic body impacting Earth.

These new data are the latest to strongly support of a controversial hypothesis proposing that a major cosmic impact with Earth occurred 12,900 years ago at the onset of an unusual cold climatic period called the Younger Dryas. The researchers’ findings appear today in the Proceedings of the National Academy of Sciences.

Full Story: http://www.ia.ucsb.edu/pa/display.aspx?pkey=2662