Archive
Astronomers ‘Unscramble’ Einstein Ring To Reveal Most Detailed View Ever Of Star Formation In The Distant Universe
ALMA’s Long Baseline Campaign produced spectacular images of the distant, gravitationally lensed galaxy called HATLAS J090311.6+003906, otherwise known as SDP.81. New analyses of these images reveal details never before seen in a galaxy so remote, including phenomenally massive yet concentrated clumps of star-forming material.
The ALMA observations of SDP.81, made at the end of 2014, were enabled by a cosmic effect known as gravitational lensing. A large galaxy nestled between SDP.81 and ALMA is acting as a lens, magnifying the more distant galaxy’s light and warping it into a near-perfect example of a phenomenon known as an Einstein Ring.
In the months following these observations, at least seven groups of scientists have independently analyzed the ALMA data on SDP.81. This flurry of research papers has divulged unprecedented information about the galaxy, including details about its structure, contents, motion, and other physical characteristics.
Link To Full Story
Link To Another Story
Link To Another Story
Scientists At Keck Discover The Fluffiest Galaxies
An international team of researchers led by Pieter van Dokkum at Yale University have used the W. M. Keck Observatory to confirm the existence of the most diffuse class of galaxies known in the universe. These “fluffiest galaxies” are nearly as wide as our own Milky Way galaxy – about 60,000 light years – yet harbor only one percent as many stars. The findings were recently published in the Astrophysical Journal Letters.
“If the Milky Way is a sea of stars, then these newly discovered galaxies are like wisps of clouds”, said van Dokkum. “We are beginning to form some ideas about how they were born and it’s remarkable they have survived at all. They are found in a dense, violent region of space filled with dark matter and galaxies whizzing around, so we think they must be cloaked in their own invisible dark matter ‘shields’ that are protecting them from this intergalactic assault.”
Cause Of Galactic Death: Strangulation
As murder mysteries go, it’s a big one: how do galaxies die and what kills them? A new study, published today in the journal Nature, has found that the primary cause of galactic death is strangulation, which occurs after galaxies are cut off from the raw materials needed to make new stars.
Researchers from the University of Cambridge and the Royal Observatory Edinburgh have found that levels of metals contained in dead galaxies provide key ‘fingerprints’, making it possible to determine the cause of death.
There are two types of galaxies in the Universe: roughly half are ‘alive’ galaxies which produce stars, and the other half are ‘dead’ ones which don’t. Alive galaxies such as our own Milky Way are rich in the cold gas – mostly hydrogen – needed to produce new stars, while dead galaxies have very low supplies. What had been unknown is what’s responsible for killing the dead ones.
Link To Full Story
How A New Telescope Will Measure The Expansion Of The Universe

Source: http://legacysurvey.org/viewer
For the past several years, scientists at the U.S. Department of Energy’s Lawrence Berkeley National Lab (Berkeley Lab) have been planning the construction of and developing technologies for a very special instrument that will create the most extensive three-dimensional map of the universe to date. Called DESI for Dark Energy Spectroscopic Instrument, this project will trace the growth history of the universe rather like the way you might track your child’s height with pencil marks climbing up a doorframe. But DESI will start from the present and work back into the past.
DESI will make a full 3D map pinpointing galaxies’ locations across the universe. The map, unprecedented in its size and scope, will allow scientists to test theories of dark energy, the mysterious force that appears to cause the accelerating expansion and stretching of the universe first discovered in observations of supernovae by groups led by Saul Perlmutter at Berkeley Lab and by Brian Schmidt, now at Australian National University, and Adam Riess, now at Johns Hopkins University.
A New, Public View Of The Sky
For the first time, scientists and the public are beginning to see the large-scale structure of the universe, thanks to the Sloan Digital Sky Survey. UA scientists provide scientific expertise and crucial technology to the largest project ever undertaken to map the cosmos.
On Jan. 6, the Sloan Digital Sky Survey issued its latest public data release, the final release of the third epoch of the survey. Weighing in at more than 100 Terabytes, “Data Release 12” (DR12) contains measurements of the properties of nearly half a billion stars and galaxies, making it one of the largest and richest databases in the history of astronomy.
“The most astonishing feature of the SDSS is the breadth of ground-breaking research it enables,” said Daniel Eisenstein of the Harvard-Smithsonian Center for Astrophysics, the director of SDSS-III. Eisenstein started the survey during his tenure as a professor at the UA’s Steward Observatory, one of the survey’s partner institutions.
Galactic Herding: New Image Brings Galaxy Diversity To Life
Galaxy groups are the most evident structures in the nearby universe. They are important laboratories for studying how galaxies form and evolve beyond our own Local Group of galaxies, which includes the Milky Way and the Great Spiral in Andromeda. Exploring the nature of these extragalactic “herds” may help to unlock the secrets to the overall structure of the universe.
Unlike animal herds, which are generally the same species traveling together, most galaxies move through space in associations comprised of myriad types, shapes, and sizes. Galaxy groups differ in their richness, size, and internal structure as well as the ages of their members. Some group galaxies are composed mainly of ancient stars, while others radiate with the power and splendor of youth.
These facts raise important questions for astronomers: Do all the galaxies in a group share a common origin? Are some just chance alignments? Or do galaxy groups pick up “strays” along the way and amalgamate them into the group?
A Simulation Of The Universe With Realistic Galaxies
The simulations took several months to run at the “Cosmology Machine” in Durham and at “Curie” in Paris, among the largest computers used for scientific research in the U.K. and France, respectively. Astronomers can now use the results to study the development of galaxies from almost 14 billion years ago until now. The results will be published in Monthly Notices of the Royal Astronomical Society on 1 January.
or years, astronomers have studied the formation of galaxies using computer simulations, but with limited success. The galaxies that formed in previous simulations were often too massive, too small, too old and too spherical.
The galaxies formed in the EAGLE-simulation (Evolution and Assembly of GaLaxies and their Environments) are a much closer reflection of real galaxies thanks to the strong galactic winds, which blow away the gas supply needed for the formation of stars. EAGLE’s galaxies are lighter and younger because fewer stars form and they form later. In the EAGLE simulation these galactic winds – which are powered by stars, supernova explosions and supermassive black holes – are stronger than in earlier simulations.
Hubble Sees The Beautiful Side Of IC 335
This new NASA/ESA Hubble Space Telescope image shows the galaxy IC 335 in front of a backdrop of distant galaxies. IC 335 is part of a galaxy group containing three other galaxies, and located in the Fornax Galaxy Cluster 60 million light-years away.
As seen in this image, the disk of IC 335 appears edge-on from the vantage point of Earth. This makes it harder for astronomers to classify it, as most of the characteristics of a galaxy’s morphology — the arms of a spiral or the bar across the center — are only visible on its face. Still, the 45 000 light-year-long galaxy could be classified as an S0 type.
The Milky Way’s New Neighbour
The Milky Way, the galaxy we live in, is part of a cluster of more than 50 galaxies that make up the ‘Local Group’, a collection that includes the famous Andromeda galaxy and many other far smaller objects. Now a Russian-American team have added to the canon, finding a tiny and isolated dwarf galaxy almost 7 million light years away. Their results appear in Monthly Notices of the Royal Astronomical Society.
The team, led by Prof Igor Karachentsev of the Special Astrophysical Observatory in Karachai-Cherkessia, Russia, found the new galaxy, named KKs3, using the Hubble Space Telescope Advanced Camera for Surveys (ACS) in August 2014. Kks3 is located in the southern sky in the direction of the constellation of Hydrus and its stars have only one ten-thousandth of the mass of the Milky Way.