Archive

Posts Tagged ‘Gemini Observatory’

The Gemini Planet Imager Produces Stunning Observations In Its First Year

January 8, 2015 Leave a comment

Image credit: Christian Marois (NRC Canada), Patrick Ingraham (Stanford University) and the GPI Team

Image credit: Christian Marois (NRC Canada), Patrick Ingraham (Stanford University) and the GPI Team

Stunning exoplanet images and spectra from the first year of science operations with the Gemini Planet Imager (GPI) were featured today in a press conference at the 225th meeting of the American Astronomical Society (AAS) in Seattle, Washington. The Gemini Planet Imager GPI is an advanced instrument designed to observe the environments close to bright stars to detect and study Jupiter-like exoplanets (planets around other stars) and see protostellar material (disk, rings) that might be lurking next to the star.

Marshall Perrin (Space Telescope Science Institute), one of the instrument’s team leaders, presented a pair of recent and promising results at the press conference. He revealed some of the most detailed images and spectra ever of the multiple planet system HR 8799. His presentation also included never-seen details in the dusty ring of the young star HR 4796A. “GPI’s advanced imaging capabilities have delivered exquisite images and data,” said Perrin. “These improved views are helping us piece together what’s going on around these stars, yet also posing many new questions.”

Link To Full Story

Advertisements

Astronomers Celebrate “Celestail Pollution” From Perseid Meteor Shower


Credit: Gemini Observatory/AURA

Credit: Gemini Observatory/AURA

This weekend, as millions of people gaze up at the stars and wait for Perseid meteors to streak across the sky, one would hardly think that these awe-inspiring “shooting stars” are also a source of atmospheric pollution.

However, meteors, like those from this month’s Perseid meteor shower, burn up high in the Earth’s atmosphere leaving behind gases. “It’s a form of natural pollution,” says Gemini Observatory’s Chad Trujillo who heads up the facility’s state-of-the-art Adaptive Optics (AO) program.

“One of the gases left behind by meteors is sodium, which collects in a layer about 60 miles (90 kilometers) above the Earth,” says Trujillo (see animation). “The reason astronomers are so fond of this particular pollution layer is because we can make it glow by using a sodium laser to excite this sodium and produce temporary, artificial stars wherever we like. Believe it or not,” jokes Trujillo, “there aren’t enough stars in the sky for astronomers!”

Full Story: http://www.gemini.edu/node/12050

Gemini Observatory Press Release/Image Release


Credit: Gemini Observatory/AURA

Credit: Gemini Observatory/AURA

Gemini Observatory’s latest tool for astronomers, a second-generation infrared instrument called FLAMINGOS-2, has “traveled a long road” to begin science observations for the Gemini scientific community. Recent images taken by FLAMINGOS-2 during its last commissioning phase dramatically illustrate that the instrument was worth the wait for astronomers around the world who are anxious to begin using it.

“It’s already one of our most requested instruments at the Gemini telescopes,” remarks Nancy Levenson, Gemini’s Deputy Director and Head of Science. “We see a long and productive life ahead for FLAMINGOS-2 once astronomers really start using it later this year.”

Full Story and Images: http://www.gemini.edu/node/12047

Revolutionary Instrument Delivers A Sharper Universe To Astronomers


Credit: Gemini Observatory/AURA

Credit: Gemini Observatory/AURA

Astronomers recently got their hands on Gemini Observatory’s revolutionary new adaptive optics system, called GeMS, “and the data are truly spectacular!” says Robert Blum, Deputy Director of the National Optical Astronomy Observatory with funding by the U.S. National Science Foundation. “What we have seen so far signals an incredible capability that leaps ahead of anything in space or on the ground – and it will for some time.” Blum is currently using GeMS to study the environments in and around star clusters, and his preliminary data, targeting the spectacular cluster identified as RMC 136, are among a set of seven images released today. The remaining six images –– spanning views of violent star-forming regions, to the graceful interaction of distant colliding galaxies –– only hint at the diversity of cutting-edge research that GeMS enables.

After more than a decade in development, the system, now in regular use at the Gemini South telescope in Chile, is streaming ultrasharp data to scientists around the world – providing a new level of detail in their studies of the universe. The images made public today show the scientific discovery power of GeMS (derived from the Gemini Multi-conjugate adaptive optics System), which uses a potent combination of multiple lasers and deformable mirrors to remove atmospheric distortions (blurriness) from ground-based images.

Full Story and Image Downloads: http://www.gemini.edu/node/12028