Archive

Posts Tagged ‘geology’

Largest Solar System Moon Detailed In Geologic Map

February 13, 2014 Leave a comment

Image credit: USGS Astrogeology Science Center/Wheaton/NASA/JPL-Caltech

Image credit: USGS Astrogeology Science Center/Wheaton/NASA/JPL-Caltech

More than 400 years after its discovery by astronomer Galileo Galilei, the largest moon in the solar system – Jupiter’s moon Ganymede – has finally claimed a spot on the map.

More than 400 years after its discovery by astronomer Galileo Galilei, the largest moon in the solar system – Jupiter’s moon Ganymede – has finally claimed a spot on the map.

A group of scientists led by Geoffrey Collins of Wheaton College has produced the first global geologic map of Ganymede, Jupiter’s seventh moon. The map combines the best images obtained during flybys conducted by NASA’s Voyager 1 and 2 spacecraft (1979) and Galileo orbiter (1995 to 2003) and is now published by the U. S. Geological Survey as a global map. It technically illustrates the varied geologic character of Ganymede’s surface and is the first global, geologic map of this icy, outer-planet moon. The geologic map of Ganymede is available for download here.

“This map illustrates the incredible variety of geological features on Ganymede and helps to make order from the apparent chaos of its complex surface,” said Robert Pappalardo of NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “This map is helping planetary scientists to decipher the evolution of this icy world and will aid in upcoming spacecraft observations.”

Link To Full Story

Advertisements

NASA Curiosity: First Mars Age Measurement And Human Exploration Help

December 9, 2013 Leave a comment

Image credit: NASA/JPL-Caltech/MSSS

Image credit: NASA/JPL-Caltech/MSSS

NASA’s Curiosity rover is providing vital insight about Mars’ past and current environments that will aid plans for future robotic and human missions.

n a little more than a year on the Red Planet, the mobile Mars Science Laboratory has determined the age of a Martian rock, found evidence the planet could have sustained microbial life, taken the first readings of radiation on the surface, and shown how natural erosion could reveal the building blocks of life. Curiosity team members presented these results and more from Curiosity in six papers published online today by Science Express and in talks at the Fall Meeting of the American Geophysical Union in San Francisco.

The second rock Curiosity drilled for a sample on Mars, which scientists nicknamed “Cumberland,” is the first ever to be dated from an analysis of its mineral ingredients while it sits on another planet. A report by Kenneth Farley of the California Institute of Technology in Pasadena, and co-authors, estimates the age of Cumberland at 3.86 billion to 4.56 billion years old. This is in the range of earlier estimates for rocks in Gale Crater, where Curiosity is working.

“The age is not surprising, but what is surprising is that this method worked using measurements performed on Mars,” said Farley. “When you’re confirming a new methodology, you don’t want the first result to be something unexpected. Our understanding of the antiquity of the Martian surface seems to be right.”

Link To Full Story

Science Benefits From Diverse Landing Area Of NASA Mars Rover

October 2, 2013 1 comment

Image credit: NASA/JPL-Caltech/Malin Space Science Systems

Image credit: NASA/JPL-Caltech/Malin Space Science Systems

NASA’s Curiosity rover is revealing a great deal about Mars, from long-ago processes in its interior to the current interaction between the Martian surface and atmosphere.

Examination of loose rocks, sand and dust has provided new understanding of the local and global processes on Mars. Analysis of observations and measurements by the rover’s science instruments during the first four months after the August 2012 landing are detailed in five reports in the Sept. 27 edition of the journal Science.

A key finding is that water molecules are bound to fine-grained soil particles, accounting for about 2 percent of the particles’ weight at Gale Crater where Curiosity landed. This result has global implications, because these materials are likely distributed around the Red Planet.

Curiosity also has completed the first comprehensive mineralogical analysis on another planet using a standard laboratory method for identifying minerals on Earth. The findings about both crystalline and non-crystalline components in soil provide clues to the planet’s volcanic history.

Link To Full Story.

Ten Years At Mars: New Global Views Plot The Red Planet’s History


New global maps of Mars released on the 10th anniversary of the launch of ESA’s Mars Express trace the history of water and volcanic activity on the Red Planet, and identify sites of special interest for the next generation of Mars explorers.

The unique atlas comprises a series of maps showing the distribution of minerals formed in water, by volcanic activity, and by weathering to create the dust that makes Mars red. They create a global context for the dominant geological processes that sculpted the planet we see today.

The maps were built from ten years of data collected by the OMEGA mineralogical mapper on Mars Express, which determines the mineral composition of the martian surface by analysing the spectrum of reflected sunlight.

“The history of Mars is encoded in its minerals,” says Alvaro Giménez, ESA’s Director of Science and Robotic Exploration.

Full Story: http://www.esa.int/Our_Activities/Space_Science/Mars_Express/Ten_years_at_Mars_new_global_views_plot_the_Red_Planet_s_history
Also: http://www.agu.org/news/press/pr_archives/2013/2013-25.shtml

‘Mount Sharp’ on Mars Links Geology’s Past and Future

March 29, 2012 Leave a comment

One particular mountain on Mars, bigger than Colorado’s grandest, has been beckoning would-be explorers since it was first sighted from orbit in the 1970s. Scientists have ideas about how it took shape in the middle of ancient Gale Crater and hopes for what evidence it could yield about whether conditions on Mars have favored life.

No mission to Mars dared approach it, though, until NASA’s Mars Science Laboratory mission, which this August will attempt to place its one-ton rover, Curiosity, at the foot of the mountain. The moat of flatter ground between the mountain and the crater rim encircling it makes too small a touchdown target to have been considered safe without precision-landing innovations used by this mission.

To focus discussions about how Curiosity will explore the mountain during a two-year prime mission after landing, the mission’s international Project Science Group has decided to call it Mount Sharp. This informal naming pays tribute to geologist Robert P. Sharp (1911-2004), a founder of planetary science, influential teacher of many current leaders in the field, and team member for NASA’s first few Mars missions. Sharp taught geology at the California Institute of Technology (Caltech), in Pasadena, from 1948 until past his retirement. Life magazine named him one of the 10 best college teachers in the nation.

Full Story: http://www.jpl.nasa.gov/news/news.cfm?release=2012-090