Archive

Posts Tagged ‘geomagnetic storms’

CINEMA Among Tiny CubeSats To Be Launched Aug. 2


Eleven tiny satellites called CubeSats will accompany a spy satellite into Earth orbit on Thursday, Aug. 2, inaugurating a new type of inexpensive, modular nanosatellite designed to piggyback aboard other NASA missions.

One of the 11 will be CINEMA (CubeSat for Ions, Neutrals, Electrons, & MAgnetic fields), an 8-pound, shoebox-sized package which was built over a period of three years by 45 students from the University of California, Berkeley, Kyung Hee University in Korea, Imperial College London, Inter-American University of Puerto Rico, and University of Puerto Rico, Mayaguez.

CINEMA will obtain images of the “ring current,” an electrical current that encircles the Earth and which, during large magnetic “space storms,” can blow out power grids on the ground.

Full Story: http://newscenter.berkeley.edu/2012/07/31/cinema-among-tiny-cubesats-to-be-launched-aug-2/

Storms From the Sun

March 12, 2012 Leave a comment

Space weather starts at the sun. It begins with an eruption such as a huge burst of light and radiation called a solar flare or a gigantic cloud of solar material called a coronal mass ejection (CME). But the effects of those eruptions happen at Earth, or at least near-Earth space. Scientists monitor several kinds of space “weather” events — geomagnetic storms, solar radiation storms, and radio blackouts – all caused by these immense explosions on the sun.

One of the most common forms of space weather, a geomagnetic storm refers to any time Earth’s magnetic environment, the magnetosphere, undergoes sudden and repeated change. This is a time when magnetic fields continually re-align and energy dances quickly from one area to another.

Geomagnetic storms occur when certain types of CMEs connect up with the outside of the magnetosphere for an extended period of time. The solar material in a CME travels with its own set of magnetic fields. If the fields point northward, they align with the magnetosphere’s own fields and the energy and particles simply slide around Earth, causing little change. But if the magnetic fields point southward, in the opposite direction of Earth’s fields, the effects can be dramatic. The sun’s magnetic fields peel back the outermost layers of Earth’s fields changing the whole shape of the magnetosphere. This is the initial phase of a geomagnetic storm.

Full Story: http://www.nasa.gov/mission_pages/sunearth/news/storms-on-sun.html

Geomagnetic Storm Strength Increases


Geomagnetic storms due to coronal mass ejections (CMEs) earlier in the week have increased in strength, and are now rated a G3 on a scale from G1 to G5.

This space weather is due to the March 7 activity from the sun that caused rapid changes to the shape of Earth’s magnetosphere – the bubble of protective magnetic fields surrounding the planet — resulting in a geomagnetic storm. As of March 8, the storm was fairly mild since the magnetic fields from the CMEs were partially aligned with Earth’s own and thus slid around the magnetosphere. However, the geomagnetic storm has increased because the magnetic fields of the CMEs have now changed direction such that they can more easily deposit magnetic energy and radiation into Earth’s environment.

Full Story: http://www.nasa.gov/mission_pages/sunearth/news/News030712-X5-4.html