Posts Tagged ‘SOFIA’

NASA’s Airborne Observatory Begins 2015 Science Campaign

January 15, 2015 Leave a comment

Credit: NASA/USRA/Greg Perryman

Credit: NASA/USRA/Greg Perryman

The Stratospheric Observatory for Infrared Astronomy, or SOFIA, Program began its third season of science flights on Jan. 13, 2015. SOFIA is NASA’s next generation flying observatory and is fitted with a 2.5-meter (100-inch) diameter telescope that studies the universe at infrared wavelengths.

“Last night’s flight used the German Receiver for Astronomy at Terahertz Frequencies (GREAT) spectrometer to study the chemical composition and motions of gas in a star-forming region, a young star, and a supernova remnant,” said Pamela Marcum, NASA’s SOFIA project scientist. “Observing at infrared wavelengths enables us to see through interstellar dust to record the spectral signatures of molecules in these regions. From this we can study the abundances of molecules and their formation process.”

Water vapor in the Earth’s atmosphere absorbs infrared radiation, preventing a large section of the infrared spectrum from reaching ground-based observatories. SOFIA is a heavily modified Boeing 747 Special Performance jetliner that flies at altitudes between 39,000 to 45,000 feet (12 to 14 km), above more than 99 percent of Earth’s atmospheric water vapor giving astronomers the ability to study celestial objects at wavelengths that cannot be seen from ground-based observatories.

Link To Full Story


SOFIA Has Gone South: Airborne Observatory Investigates The Southern Sky From New Zealand

For the first time SOFIA, the “Stratospheric Observatory for Infrared Astronomy”, has been deployed to the southern hemisphere. Based at the airport of Christchurch, New Zealand for three weeks, SOFIA has started to study celestial objects that are uniquely observable on southern flight routes. On the morning of July 18 New Zealand time, SOFIA landed after the first of its planned 9 science flights that included studies of the Magellanic Clouds, neighbours to the Milky Way galaxy, and of the circumnuclear disk orbiting the black hole in the center of our Galaxy. The GREAT instrument used in these flights has been developed by a consortium of German research institutes led by Rolf Güsten (Max Planck Institute for Radio Astronomy).

Full Story:

SOFIA Observations Reveal A Surprise In Massive Star Formation

Researchers using the airborne Stratospheric Observatory for Infrared Astronomy (SOFIA) have captured the most detailed mid-infrared images yet of a massive star condensing within a dense cocoon of dust and gas.

The star is G35.20-0.74, more commonly known as G35. It is one of the most massive known protostars and is located relatively close to Earth at a distance of 8,000 light years.

Until now, scientists expected the formation process of massive stars would be complicated by the turbulent, chaotic environments in the centers of new star clusters where they form. But observations of G35 suggest this giant star, more than 20 times the mass of our sun, is forming by the same orderly process as do stars with the same mass as the sun. Stars most like the sun are understood to form by simple, symmetric collapse of interstellar clouds.

Full Story:

NASA’S SOFIA To Embark On New Cycle Of Science Observations

August 31, 2012 1 comment

Cabin View In Flight

The Stratospheric Observatory for Infrared Astronomy, or SOFIA, a joint program between NASA and the German Aerospace Center DLR, is set to begin its first full cycle of science flights starting in November 2012 and extending through December 2013. SOFIA’s Science Mission Operations Director Erick Young today announced the list of researchers who have been awarded time to study the universe with this unique infrared observatory.

SOFIA is a heavily modified 747SP aircraft that carries a telescope with an effective diameter of 100 inches (2.5 meters) to altitudes above 39,000 feet (12 km), beyond the obscuring layer of water vapor in Earth’s atmosphere.

In announcing the observing time awards, Young noted, “More than 1,000 hours of observing time were requested, five times the amount available, evidence of SOFIA’s desirability to astronomers. The approved projects make good use of the observatory’s capabilities to study objects ranging from Earth’s solar system neighbors to galaxies hundreds of millions of light years away.”

Full Story:

NASA’s SOFIA Captures Images of the Planetary Nebula M2-9

Image Credit: NASA / DLR / USRA / DSI / FORCAST team / M. Werner, J. Rho

Image Credit: NASA / DLR / USRA / DSI / FORCAST team / M. Werner, J. Rho

Researchers using NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) have captured infrared images of the last exhalations of a dying sun-like star.

The object observed by SOFIA, planetary nebula Minkowski 2-9, or M2-9 for short, is seen in this three-color composite image. The SOFIA observations were made at the mid-infrared wavelengths of 20, 24, and 37 microns. The 37-micron wavelength band detects the strongest emissions from the nebula and is impossible to observe from ground-based telescopes.

Objects such as M2-9 are called planetary nebulae due to a mistake made by early astronomers who discovered these objects while sweeping the sky with small telescopes. Many of these nebulae have the color, shape and size of Uranus and Neptune, so they were dubbed planetary nebulae. The name persists despite the fact that these nebulae are now known to be distant clouds of material, far beyond our solar system, that are shed by stars about the size of our sun undergoing upheavals during their final life stages.

Although the M2-9 nebular material is flowing out from a spherical star, it is extended in one dimension, appearing as a cylinder or hourglass. Astronomers hypothesize that planetary nebulae with such shapes are produced by opposing flows of high-speed material caused by a disk of material around the dying star at the center of the nebula. SOFIA’s observations of M2-9 were designed to study the outflow in detail with the goal of better understanding this stellar life cycle stage that is important in our galaxy’s evolution.

Full Story:

NASA’s Airborne Observatory Views Starbirth Region W40

November 22, 2011 Leave a comment



A new image from NASA’s Stratospheric Observatory for Infrared Astronomy, or SOFIA, provides the highest resolution mid-infrared image taken to date of the massive star formation region in our galaxy known as W40.

The W40 image was taken by the Faint Object infraRed Camera for the SOFIA Telescope (FORCAST) instrument mounted in the airborne observatory – a highly modified 747SP airliner carrying a reflecting telescope with an effective diameter of 100 inches (2.5 meters). The image of W40 is a composite of data captured by the FORCAST camera at infrared wavelengths of 5.4, 24.2, and 34.8 microns, all of which are partially or completely blocked by water vapor in Earth’s atmosphere and inaccessible to observatories even on high mountain tops.

W40 is difficult to view with optical telescopes because it lies on the far side of a very dense cloud of gas and dust. Infrared observations of the region peer through the dust to reveal a bright nebula and dozens of young stars with at least six massive stars, six to 20 times the mass of the sun, forming at the center.

At least 50 percent of the stars in the Milky Way Galaxy formed in massive clusters of thousands of stars similar to W40. Evidence suggests that the solar system developed in such a cluster almost 5 billion years ago. Because stars are relatively dim at the wavelengths measured by FORCAST, the observed emission in the images is due to dust surrounding the stars that is heated to a few hundred degrees.

Full Story:

NASA Announces California Tweetup To Tour Airborne Observatory

September 27, 2011 Leave a comment

NASA will host a Tweetup for 50 of its Twitter followers on Oct. 14 at the agency’s Ames Research Center in Moffett Field, Calif. The Tweetup includes a tour of the Stratospheric Observatory for Infrared Astronomy (SOFIA) aircraft, which will visit Ames.

SOFIA is a highly modified Boeing 747SP aircraft that carries a telescope with a 100-inch reflecting mirror to conduct astronomy research not possible with ground-based telescopes. SOFIA is housed at NASA’s Dryden Aircraft Operations Facility in Palmdale, Calif.

In addition to climbing aboard SOFIA, the Tweetup guests will speak with NASA officials, managers and SOFIA scientists. The Tweetup will include a session where participants can mingle with fellow Tweeps and the staff behind the tweets on @NASA, @NASAAmes and @SOFIATelescope.

Full Story: