Archive

Posts Tagged ‘solar flares’

Artificial Intelligence Helps Stanford Physicists Predict Dangerous Solar Flares

January 15, 2015 Leave a comment

Credit: NASA/SDO and the AIA; EVE; and HMI science teams

Credit: NASA/SDO and the AIA; EVE; and HMI science teams

Solar flares can release the energy equivalent of many atomic bombs, enough to cut out satellite communications and damage power grids on Earth, 93 million miles away. The flares arise from twisted magnetic fields that occur all over the sun’s surface, and they increase in frequency every 11 years, a cycle that is now at its maximum.

Using artificial intelligence techniques, Stanford solar physicists Monica Bobra and Sebastien Couvidat have automated the analysis of the largest ever set of solar observations to forecast solar flares using data from the Solar Dynamics Observatory (SDO), which takes more data than any other satellite in NASA history. Their study identifies which features are most useful for predicting solar flares.

Link To Full Story

Advertisements

Sun Emits Third Solar Flare In 2 Days

October 31, 2013 Leave a comment

Image Credit: NASA/SDO/GSFC

Image Credit: NASA/SDO/GSFC

The sun emitted a significant solar flare, peaking at 4:01 a.m. EDT on Oct. 25, 2013. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth’s atmosphere to physically affect humans on the ground, however — when intense enough — they can disturb the atmosphere in the layer where GPS and communications signals travel. This disrupts the radio signals for as long as the flare is ongoing, anywhere from minutes to hours.

This flare is classified as an X1.7 class flare. “X-class” denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. In the past, X-class flares of this intensity have caused degradation or blackouts of radio communications for about an hour.

Link To Full Story

Researchers Explain Magnetic Field Misbehavior In Solar Flares: The Culprit Is Turbulence

May 28, 2013 2 comments

Credit: NASA/SDO

Credit: NASA/SDO

When a solar flare filled with charged particles erupts from the sun, its magnetic fields sometime break a widely accepted rule of physics. The flux-freezing theorem dictates that the magnetic lines of force should flow away in lock-step with the particles, whole and unbroken. Instead, the lines sometimes break apart and quickly reconnect in a way that has mystified astrophysicists.

But in a paper published in the May 23 issue of the journal Nature, an interdisciplinary research team led by a Johns Hopkins mathematical physicist says it has found a key to the mystery. The culprit, the group proposed, is turbulence—the same sort of violent disorder that can jostle a passenger jet when it occurs in the atmosphere. Using complex computer modeling to mimic what happens to magnetic fields when they encounter turbulence within a solar flare, the researchers built their case, explaining why the usual rule did not apply.

“The flux-freezing theorem often explains things beautifully,” said Gregory Eyink, a Department of Applied Mathematics and Statistics professor who was lead author of the Nature study. “But in other instances, it fails miserably. We wanted to figure out why this failure occurs.”

Full Story: http://releases.jhu.edu/2013/05/22/researchers-explain-magnetic-field-misbehavior-in-solar-flares-the-culprit-is-turbulence/

New System Could Predict Solar Flares, Give Advance Warning

August 14, 2012 Leave a comment

Researchers may have discovered a new method to predict solar flares more than a day before they occur, providing advance warning to help protect satellites, power grids and astronauts from potentially dangerous radiation.

The system works by measuring differences in gamma radiation emitted when atoms in radioactive elements “decay,” or lose energy. This rate of decay is widely believed to be constant, but recent findings challenge that long-accepted rule.

The new detection technique is based on a hypothesis that radioactive decay rates are influenced by solar activity, possibly streams of subatomic particles called solar neutrinos. This influence can wax and wane due to seasonal changes in the Earth’s distance from the sun and also during solar flares, according to the hypothesis, which is supported with data published in a dozen research papers since it was proposed in 2006, said Ephraim Fischbach, a Purdue University professor of physics.

Full Story: http://www.purdue.edu/newsroom/releases/2012/Q3/new-system-could-predict-solar-flares,-give-advance-warning.html

NASA STEREO Observes One Of The Fastest CMEs On Record

August 13, 2012 Leave a comment

On July 23, 2012, a massive cloud of solar material erupted off the sun’s right side, zooming out into space, passing one of NASA’s Solar TErrestrial RElations Observatory (STEREO) spacecraft along the way. Using the STEREO data, scientists at NASA’s Goddard Space Flight Center in Greenbelt, Md. clocked this giant cloud, known as a coronal mass ejection, or CME, as traveling between 1,800 and 2,200 miles per second as it left the sun.

Conversations began to buzz and the emails to fly: this was the fastest CME ever observed by STEREO, which since its launch in 2006 has helped make CME speed measurements much more precise. Such an unusually strong bout of space weather gives scientists an opportunity to observe how these events affect the space around the sun, as well as to improve their understanding of what causes them.

Full Story: http://www.nasa.gov/mission_pages/stereo/news/fast-cme.html

Prediction System To Protect Astronauts From Solar Storms

June 30, 2012 1 comment

With the impending solar maximum expected to bring heightened rates of flares and coronal mass ejections (CMEs), putting at risk an ever-increasing human presence in space, Oh et al. designed and assessed a prediction system to keep astronauts safe from these solar storms. During a solar flare or CME, particles from the Sun can be accelerated to very high energies-in some cases travelling near the speed of light. Protons with energies surpassing 100 megaelectron volts essentially sandblast everything in their path. Though people on Earth are protected by the planet’s magnetic field and thick atmosphere, astronauts in spacecraft beyond low-Earth orbit, or people at high altitudes near the poles, can be exposed to this increased radiation. This can potentially cause radiation sickness, with symptoms such as fever and vomiting.

Full Story: http://www.agu.org/news/press/jhighlight_archives/2012/2012-06-29.shtml#two

UNH To Analyze “Bellwether” Solar Event Data From European Satellite


DURHAM, N.H. — When the sun launched a moderate, or M-class, solar flare May 17, 2012, it was still one of the largest eruptions seen since late January when our star began to rouse from an anomalously long quiet period. But the event was not just an additional solar wake-up call; it produced something that has the solar physics community puzzled and scientists from the University of New Hampshire poised to analyze a singular dataset gathered during the event by a European satellite called PAMELA – short for Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics.

The puzzle is this: The solar event created what is known as a ground-level enhancement (GLE), which is a blast of high-energy particles registered by ground stations on Earth after a very large solar flare and/or another explosive mechanism known as a coronal mass ejection (CME). The May 17 GLE lit up ground stations (neutron monitors) all over the world for the first time in nearly six years, but given the stature, or lack thereof, of the solar explosions, there should have been no GLE at all.

Full Story: http://www.eos.unh.edu/news/indiv_news.shtml?NEWS_ID=1312