Archive

Posts Tagged ‘stars’

Nearby “Dwarf” Galaxy Is Home To Luminous Star Cluster


The NGC 5253 galaxy as seen through the Hubble Space Telescope

The NGC 5253 galaxy as seen through the Hubble Space Telescope

A team of Tel Aviv University and UCLA astronomers have discovered a remarkable cluster of more than a million young stars are forming in a hot, dusty cloud of molecular gases in a tiny galaxy very near our own.

The star cluster is buried within a massive gas cloud dubbed “Cloud D” in the NGC 5253 dwarf galaxy, and, although it’s a billion times brighter than our sun, is barely visible, hidden by its own hot gases and dust. The star cluster contains more than 7,000 massive “O” stars: the most brilliant stars extant, each a million times more luminous than our sun.

“Cloud D is an incredibly efficient star and soot factory,” says Prof. Sara Beck of TAU’s Department of Astronomy and Astrophysics and co-author of the research, recently published in Nature. “This cloud has created a huge cluster of stars, and the stars have created an unprecedented amount of dust.”

Link To Full Story

Sharp-Eyed Alma Spots A Flare On Famous Red Giant Star


Artist’s impression of a giant flare on the surface of red giant Mira A. Credit: Katja Lindblom, CC BY-NC-ND 4.0

Artist’s impression of a giant flare on the surface of red giant Mira A. Credit: Katja Lindblom, CC BY-NC-ND 4.0

Super-sharp observations with the telescope Alma have revealed what seems to be a gigantic flare on the surface of Mira, one of the closest and most famous red giant stars in the sky. Activity like this in red giants – similar to what we see in the Sun – comes as a surprise to astronomers. The discovery could help explain how winds from giant stars make their contribution to our galaxy’s ecosystem.

New observations with Alma have given astronomers their sharpest ever view of the famous double star Mira. The images clearly show the two stars in the system, Mira A and Mira B, but that’s not all. For the first time ever at millimetre wavelengths, they reveal details on the surface of Mira A.

“Alma’s vision is so sharp that we can begin to see details on the surface of the star. Part of the stellar surface is not just extremely bright, it also varies in brightness. This must be a giant flare, and we think it’s related to a flare which X-ray telescopes observed some years ago”, says Wouter Vlemmings, astronomer at Chalmers, who led the team.

Link To Full Story

Giant Spiraling Molecular Gas Arms As Cradles Of Dense Massive Molecular Cores


Credit: ALMA(ESO/NAOJ/NRAO), H. B. Liu, J. Dale

Credit: ALMA(ESO/NAOJ/NRAO), H. B. Liu, J. Dale

A research team led by Dr. Hauyu Liu at the Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA) observed the luminous OB cluster-forming massive molecular clump G33.92+0.11 with the Atacama Large Millimeter/submillimeter Array (ALMA), and unveiled the fine molecular gas structures deeply embedded at the center of the parent molecular cloud. This finding provides a greatly simplified picture of overall cloud geometry and kinematics, which represents a crucial step forward in the understanding of the upper end of the stellar and molecular core mass functions. The research was published in the April 28 issue of The Astrophysical Journal.

Via ALMA observations, this research for the first time resolved an embedded giant coherent dense gas structure on a several light-year scale. Surprisingly, this dense gas structure presents several spiral arms, which appear like a version of the previously observed spiral arms surrounding the low-mass protobinary, scaled-up by a factor of ~103. These giant spiral arms, and the massive molecular gas cores located at their convergence, are cradles to form the highest mass stars in this stellar cluster.

Link To Full Story

Supernova Hits Star, Results Shocking


Photo Credit: Courtesy of Dan Kasen

Photo Credit: Courtesy of Dan Kasen

The origin of type Ia supernovae, the standard candles used to reveal the presence of dark energy in the universe, is one of astronomy’s most beguiling mysteries. Astronomers know they occur when a white dwarf explodes in a binary system with another star, but the properties of that second star — and how it triggers the explosion — have remained elusive for decades.

Now, a team of astronomers from the intermediate Palomar Transient Factory (iPTF), including those associated with UC Santa Barbara, have witnessed a supernova smashing into a nearby star, shocking it, and creating an ultraviolet glow that reveals the size of the companion. The discovery involved the rapid response and coordination of iPTF, NASA’s Swift satellite and the new capabilities of the Las Cumbres Observatory Global Telescope Network (LCOGT).

Link To Full Story

Discovery Of An Extremely Young Stellar Clump In The Distant Universe


Credits: CEA/HST

Credits: CEA/HST

As part of an observing program carried out with the Subaru Telescope and the Hubble Space Telescope, a group of researchers from the “Service d’Astrophysique-Laboratoire AIM” of CEA-IRFU led by Anita Zanella discovered the birth cry of a massive star-forming clump in the disk of a very distant galaxy. This giant clump is less than 10 million years old, and it is the very first time that such a young star-forming region is observed in the distant Universe. This discovery sheds new light on how stars were born within distant galaxies. The physical properties of this object reveal that newly-born clumps in such galaxies survive from stellar winds and supernovae feedback, and can thus live for a few hundred million years unlike the predictions from several theoretical models. Their long lifetime could enable their migration toward the inner regions of the galaxy, hence contributing to the total mass of the galactic bulge and the growth of the central black hole. These results are published in the “Nature” journal from May 2015.

Link To Full Story

Cause Of Galactic Death: Strangulation


Artist’s impression. Credit: re-active

Artist’s impression. Credit: re-active

As murder mysteries go, it’s a big one: how do galaxies die and what kills them? A new study, published today in the journal Nature, has found that the primary cause of galactic death is strangulation, which occurs after galaxies are cut off from the raw materials needed to make new stars.

Researchers from the University of Cambridge and the Royal Observatory Edinburgh have found that levels of metals contained in dead galaxies provide key ‘fingerprints’, making it possible to determine the cause of death.

There are two types of galaxies in the Universe: roughly half are ‘alive’ galaxies which produce stars, and the other half are ‘dead’ ones which don’t. Alive galaxies such as our own Milky Way are rich in the cold gas – mostly hydrogen – needed to produce new stars, while dead galaxies have very low supplies. What had been unknown is what’s responsible for killing the dead ones.

Link To Full Story

Subaru Telescope Observers Superflare Stars With Large Starspots


Artificial image of a superflare star. Credit: Kyoto University

Artificial image of a superflare star. Credit: Kyoto University

A team of astronomers has used the High Dispersion Spectrograph on the Subaru Telescope to conduct spectroscopic observations of Sun-like “superflare” stars first observed and cataloged by the Kepler Space Telescope. The investigations focused on the detailed properties of these stars and confirmed that Sun-like stars with large starspots can experience superflares.

The team, made up of astronomers from Kyoto University, University of Hyogo, the National Astronomical Observatory of Japan (NAOJ), and Nagoya University, targeted a set of solar-type stars emitting very large flares that release total energies 10-10000 times greater than the biggest solar flares. Solar flares are energetic explosions in the solar atmosphere and are thought to occur by intense releases of magnetic energy around the sunspots. Large flares often cause massive bursts of high-speed plasma called coronal mass ejections (CMEs), can lead to geomagnetic storms on Earth. Such storms can have severe impacts on our daily life by affecting such systems as communications and power grids.

Link To Full Story