Archive

Posts Tagged ‘stars’

NASA’s Airborne Observatory Begins 2015 Science Campaign

January 15, 2015 Leave a comment

Credit: NASA/USRA/Greg Perryman

Credit: NASA/USRA/Greg Perryman

The Stratospheric Observatory for Infrared Astronomy, or SOFIA, Program began its third season of science flights on Jan. 13, 2015. SOFIA is NASA’s next generation flying observatory and is fitted with a 2.5-meter (100-inch) diameter telescope that studies the universe at infrared wavelengths.

“Last night’s flight used the German Receiver for Astronomy at Terahertz Frequencies (GREAT) spectrometer to study the chemical composition and motions of gas in a star-forming region, a young star, and a supernova remnant,” said Pamela Marcum, NASA’s SOFIA project scientist. “Observing at infrared wavelengths enables us to see through interstellar dust to record the spectral signatures of molecules in these regions. From this we can study the abundances of molecules and their formation process.”

Water vapor in the Earth’s atmosphere absorbs infrared radiation, preventing a large section of the infrared spectrum from reaching ground-based observatories. SOFIA is a heavily modified Boeing 747 Special Performance jetliner that flies at altitudes between 39,000 to 45,000 feet (12 to 14 km), above more than 99 percent of Earth’s atmospheric water vapor giving astronomers the ability to study celestial objects at wavelengths that cannot be seen from ground-based observatories.

Link To Full Story

The Gemini Planet Imager Produces Stunning Observations In Its First Year

January 8, 2015 Leave a comment

Image credit: Christian Marois (NRC Canada), Patrick Ingraham (Stanford University) and the GPI Team

Image credit: Christian Marois (NRC Canada), Patrick Ingraham (Stanford University) and the GPI Team

Stunning exoplanet images and spectra from the first year of science operations with the Gemini Planet Imager (GPI) were featured today in a press conference at the 225th meeting of the American Astronomical Society (AAS) in Seattle, Washington. The Gemini Planet Imager GPI is an advanced instrument designed to observe the environments close to bright stars to detect and study Jupiter-like exoplanets (planets around other stars) and see protostellar material (disk, rings) that might be lurking next to the star.

Marshall Perrin (Space Telescope Science Institute), one of the instrument’s team leaders, presented a pair of recent and promising results at the press conference. He revealed some of the most detailed images and spectra ever of the multiple planet system HR 8799. His presentation also included never-seen details in the dusty ring of the young star HR 4796A. “GPI’s advanced imaging capabilities have delivered exquisite images and data,” said Perrin. “These improved views are helping us piece together what’s going on around these stars, yet also posing many new questions.”

Link To Full Story

A New, Public View Of The Sky

January 8, 2015 Leave a comment

Photo: Adam Block and Vic Eden/Mount Lemmon SkyCenter/UA

Photo: Adam Block and Vic Eden/Mount Lemmon SkyCenter/UA

For the first time, scientists and the public are beginning to see the large-scale structure of the universe, thanks to the Sloan Digital Sky Survey. UA scientists provide scientific expertise and crucial technology to the largest project ever undertaken to map the cosmos.

On Jan. 6, the Sloan Digital Sky Survey issued its latest public data release, the final release of the third epoch of the survey. Weighing in at more than 100 Terabytes, “Data Release 12” (DR12) contains measurements of the properties of nearly half a billion stars and galaxies, making it one of the largest and richest databases in the history of astronomy.

“The most astonishing feature of the SDSS is the breadth of ground-breaking research it enables,” said Daniel Eisenstein of the Harvard-Smithsonian Center for Astrophysics, the director of SDSS-III. Eisenstein started the survey during his tenure as a professor at the UA’s Steward Observatory, one of the survey’s partner institutions.

Link To Full Story And Video

‘Perfect Storm’ Quenching Star Formation Around A Supermassive Black Hole

December 17, 2014 Leave a comment

A combined Hubble Space Telescope / ALMA image of NGC 1266. Credit: NASA/ESA Hubble; ALMA (NRAO/ESO/NAOJ)

A combined Hubble Space Telescope / ALMA image of NGC 1266. Credit: NASA/ESA Hubble; ALMA (NRAO/ESO/NAOJ)

High-energy jets powered by supermassive black holes can blast away a galaxy’s star-forming fuel, resulting in so-called “red and dead” galaxies: those brimming with ancient red stars yet containing little or no hydrogen gas to create new ones.

Now astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have discovered that black holes don’t have to be nearly so powerful to shut down star formation. By observing the dust and gas at the center of NGC 1266, a nearby lenticular galaxy with a relatively modest central black hole, the astronomers have detected a “perfect storm” of turbulence that is squelching star formation in a region that would otherwise be an ideal star factory.

This turbulence is stirred up by jets from the galaxy’s central black hole slamming into an incredibly dense envelope of gas. This dense region, which may be the result of a recent merger with another smaller galaxy, blocks nearly 98 percent of material propelled by the jets from escaping the galactic center.

Link To Full Story

Surprising Theorists, Stars Within Middle-Aged Clusters Are Of Similar Age

December 17, 2014 Leave a comment

Image: NASA/ESA Hubble Space Telescope/Fabian RRRR

Image: NASA/ESA Hubble Space Telescope/Fabian RRRR

A close look at the night sky reveals that stars don’t like to be alone; instead, they congregate in clusters, in some cases containing as many as several million stars. Until recently, the oldest of these populous star clusters were considered well understood, with the stars in a single group having formed at different times, over periods of more than 300 million years. Yet new research published online today in the journal Nature suggests that the star formation in these clusters is more complex.

Using data from the Hubble Space Telescope, a team of researchers at the Kavli Institute for Astronomy and Astrophysics (KIAA) at Peking University and the Chinese Academy of Science’s National Astronomical Observatories in Beijing have found that, in large middle-aged clusters at least, all stars appear to be of about the same age.

Link To Full Story

Stretched-Out Solid Exoplanets

December 16, 2014 Leave a comment

Artist’s impression. Credit: Shivam Sikroria

Artist’s impression. Credit: Shivam Sikroria

Astronomers could soon be able to find rocky planets stretched out by the gravity of the stars they orbit, according to a group of researchers in the United States. The team, led by Prabal Saxena of George Mason University, describe how to detect these exotic worlds in a paper in the journal Monthly Notices of the Royal Astronomical Society.

Since the first discovery in 1993, more than 1800 planets have been found in orbit around stars other than our Sun. These ‘exoplanets’ are incredibly diverse, with some gaseous like Jupiter and some mostly rocky like the Earth. The worlds also orbit their stars at very different distances, from less than a million km to nearly 100 billion km away.

Link To Full Story

Cosmic Forecast: Dark Clouds Will Give Way To Sunshine

September 3, 2014 Leave a comment

Credit: ESO

Credit: ESO

Lupus 4, a spider-shaped blob of gas and dust, blots out background stars like a dark cloud on a moonless night in this intriguing new image. Although gloomy for now, dense pockets of material within clouds such as Lupus 4 are where new stars form and where they will later burst into radiant life. The Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO’s La Silla Observatory in Chile captured this new picture.

Link To Full Story

Australian Researchers Pioneer A ‘Google Street View’ Of Galaxies


A new home-grown instrument based on bundles of optical fibres is giving Australian astronomers the first ‘Google street view’ of the cosmos — incredibly detailed views of huge numbers of galaxies.

Developed by researchers at the University of Sydney and the Australian Astronomical Observatory, the optical-fibre bundles can sample the light from up to 60 parts of a galaxy, for a dozen galaxies at a time.

By analysing the light’s spectrum astronomers can learn how gas and stars move within each galaxy, where the young stars are forming and where the old stars live. This will allow them to better understand how galaxies change over time and what drives that change.

“It’s a giant step,” said Dr James Allen of the ARC Centre of Excellence for All-sky Astrophysics(CAASTRO) at the University of Sydney.

“Before, we could study one galaxy at a time in detail, or lots of galaxies at once but in much less detail. Now we have both the numbers and the detail.”

Link To Full Story

Hubble Traces The Halo Of A Galaxy More Accurately Than Ever Before


Image credit: ESA/Hubble, NASA, Digitized Sky Survey, MPG/ESO

Image credit: ESA/Hubble, NASA, Digitized Sky Survey, MPG/ESO

Astronomers using the NASA/ESA Hubble Space Telescope have probed the extreme outskirts of the stunning elliptical galaxy Centaurus A. The galaxy’s halo of stars has been found to extend much further from the galaxy’s centre than expected and the stars within this halo seem to be surprisingly rich in heavy elements. This is the most remote portion of an elliptical galaxy ever to have been explored.

There is more to a galaxy than first meets the eye. Extending far beyond the bright glow of a galaxy’s centre, the swirling spiral arms, or the elliptical fuzz, is an extra component: a dim halo of stars sprawling into space.

These expansive haloes are important components of a galaxy. The halo of our own galaxy, the Milky Way, preserves signatures of both its formation and evolution. Yet, we know very little about the haloes of galaxies beyond our own as their faint and spread-out nature makes exploring them more difficult. Astronomers have so far managed to detect very few starry haloes around other galaxies.

Link To Full Story

Lives And Deaths Of Sibling Stars


Credit: ESO/G. Beccari

Credit: ESO/G. Beccari

In this striking new image from ESO’s La Silla Observatory in Chile young stars huddle together against a backdrop of clouds of glowing gas and lanes of dust. The star cluster, known as NGC 3293, would have been just a cloud of gas and dust itself about ten million years ago, but as stars began to form it became the bright group of stars we see here. Clusters like this are celestial laboratories that allow astronomers to learn more about how stars evolve.

This beautiful star cluster, NGC 3293, is found 8000 light-years from Earth in the constellation of Carina (The Keel). This cluster was first spotted by the French astronomer Nicolas-Louis de Lacaille in 1751, during his stay in what is now South Africa, using a tiny telescope with an aperture of just 12 millimetres. It is one of the brightest clusters in the southern sky and can be easily seen with the naked eye on a dark clear night.

Star clusters like NGC 3293 contain stars that all formed at the same time, at the same distance from Earth and out of the same cloud of gas and dust, giving them the same chemical composition. As a result clusters like this are ideal objects for testing stellar evolution theory.

Link To Full Story