Posts Tagged ‘white dwarfs’

Supernova Hits Star, Results Shocking

Photo Credit: Courtesy of Dan Kasen

Photo Credit: Courtesy of Dan Kasen

The origin of type Ia supernovae, the standard candles used to reveal the presence of dark energy in the universe, is one of astronomy’s most beguiling mysteries. Astronomers know they occur when a white dwarf explodes in a binary system with another star, but the properties of that second star — and how it triggers the explosion — have remained elusive for decades.

Now, a team of astronomers from the intermediate Palomar Transient Factory (iPTF), including those associated with UC Santa Barbara, have witnessed a supernova smashing into a nearby star, shocking it, and creating an ultraviolet glow that reveals the size of the companion. The discovery involved the rapid response and coordination of iPTF, NASA’s Swift satellite and the new capabilities of the Las Cumbres Observatory Global Telescope Network (LCOGT).

Link To Full Story

Hubble Catches Stellar Exodus In Action

Credits: NASA, ESA, and H. Richer and J. Heyl (University of British Columbia, Vancouver, Canada)

Credits: NASA, ESA, and H. Richer and J. Heyl (University of British Columbia, Vancouver, Canada)

Using NASA’s Hubble Space Telescope, astronomers have captured for the first time snapshots of fledging white dwarf stars beginning their slow-paced, 40-million-year migration from the crowded center of an ancient star cluster to the less populated suburbs.

White dwarfs are the burned-out relics of stars that rapidly lose mass, cool down and shut off their nuclear furnaces. As these glowing carcasses age and shed weight, their orbits begin to expand outward from the star cluster’s packed downtown. This migration is caused by a gravitational tussle among stars inside the cluster. Globular star clusters sort out stars according to their mass, governed by a gravitational billiard ball game where lower mass stars rob momentum from more massive stars. The result is that heavier stars slow down and sink to the cluster’s core, while lighter stars pick up speed and move across the cluster to the edge. This process is known as “mass segregation.” Until these Hubble observations, astronomers had never definitively seen the dynamical conveyor belt in action.

Link To Full Story

Link To Another Story

NASA’s Chandra Observatory Searches For Trigger Of Nearby Supernova

August 14, 2014 Leave a comment

Credit: NASA / CXC / SAO / R.Margutti et al.

Credit: NASA / CXC / SAO / R.Margutti et al.

New data from NASA’s Chandra X-ray Observatory offer a glimpse into the environment of a star before it exploded earlier this year, and insight into what triggered one of the closest supernovas witnessed in decades.

The data gathered on the Jan. 21 explosion, a Type Ia supernova, allowed scientists to rule out one possible cause. These supernovas may be triggered when a white dwarf takes on too much mass from its companion star, immersing it in a cloud of gas that produces a significant source of X-rays after the explosion.

Astronomers used NASA’s Swift and Chandra telescopes to search the nearby Messier 82 galaxy, the location of the explosion, for such an X-ray source. However, no source was found, revealing the region around the site of the supernova is relatively devoid of material.

“While it may sound a bit odd, we actually learned a great deal about this supernova by detecting absolutely nothing,” said Raffaella Margutti of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Massachusetts, who led the study. “Now we can essentially rule out that the explosion was caused by a white dwarf continuously pulling material from a companion star.”

Link To Full Story

NOAO: The Coolest Known White Dwarf: A Diamond In The Sky?

“Up above the world so high, like a diamond in the sky…” A team of astronomers, using multiple telescopes, has identified the coolest, faintest white dwarf star known. White dwarfs are the extremely dense end states of stars like our sun: after their nuclear fuel is exhausted, they collapse from the size of a star (about 1,000,000 miles across) to the size of the Earth (7,000 miles across). This white dwarf, located in the constellation Aquarius, is so cool that its carbon has crystallized—in other words, it’s like a diamond, with a mass similar to that of our sun.

The path to this discovery began when Dr. Jason Boyles, then a graduate student at West Virginia University, identified what astronomers refer to as a millisecond pulsar in this location. Pulsars are spinning neutron stars—the collapsed end state of a star many times more massive than our sun, but only about 20 miles across. Known as PSR J2222-0137, which simply identifies its position in the sky, this pulsar is spinning over 30 times a second. Its orientation is such that as it spins, a beam from its magnetic pole sweeps repeatedly past the earth, giving rise to regular blips of radio waves. (The pulsar is detected only in radio waves, not in visible light.) The observations also revealed that this pulsar is gravitationally bound to a companion star: the two orbit around each other every 2.45 days. It is this companion object that appears to be either another neutron star or, more likely, a remarkably cool white dwarf.

Link To Full Story
Link To Another Story

Texas Astronomers Discover Pulsations In Crystalized, Dying Star

Astronomers from The University of Texas at Austin and colleagues have used the 2.1-meter Otto Struve Telescope at the university’s McDonald Observatory to discover pulsations from the crystalized remnant of a burnt-out star. The finding will allow astronomers to see below the star’s atmosphere and into its interior, much like earthquakes allow geologists to study compositions below Earth’s surface. The findings appear in the current issue of The Astrophysical Journal Letters.

The Texas astronomers made their discovery in collaboration with astronomers from Brazil’s Universidade Federal do Rio Grande do Sul, the University of Oklahoma, and the Smithsonian Astrophysical Observatory.

The star, GD 518, is roughly 170 light years from Earth in the constellation Draco, but far too faint to be seen without a telescope. It is a white dwarf, a star at the end of its life cycle that is essentially just a burnt-out core, the ashy byproduct of previous epochs of nuclear fusion.

The star is unique in that much of it is likely suspended in a state more akin to a solid than a liquid or gas. The interiors of dying stars can become crystalized similar to the way in which frigid water freezes into ice, like the slow formation of glaciers in cooling ocean water.

Full Story:

Hubble Finds Dead Stars “Polluted” With Planetary Debris

The NASA/ESA Hubble Space Telescope has found signs of Earth-like planets in an unlikely place: the atmospheres of a pair of burnt-out stars in a nearby star cluster. The white dwarf stars are being polluted by debris from asteroid-like objects falling onto them. This discovery suggests that rocky planet assembly is common in clusters, say researchers.

The stars, known as white dwarfs — small, dim remnants of stars once like the Sun — reside 150 light-years away in the Hyades star cluster, in the constellation of Taurus (The Bull). The cluster is relatively young, at only 625 million years old.

Astronomers believe that all stars formed in clusters. However, searches for planets in these clusters have not been fruitful — of the roughly 800 exoplanets known, only four are known to orbit stars in clusters. This scarcity may be due to the nature of the cluster stars, which are young and active, producing stellar flares and other outbursts that make it difficult to study them in detail.

Full Story:

Looking For Life By The Light Of Dying Stars

Because it has no source of energy, a dead star — known as a white dwarf — will eventually cool down and fade away. But circumstantial evidence suggests that white dwarfs can still support habitable planets, says Prof. Dan Maoz of Tel Aviv University’s School of Physics and Astronomy.

Now Prof. Maoz and Prof. Avi Loeb, Director of Harvard University’s Institute for Theory and Computation and a Sackler Professor by Special Appointment at TAU, have shown that, using advanced technology to become available within the next decade, it should be possible to detect biomarkers surrounding these planets — including oxygen and methane — that indicate the presence of life.

Published in the Monthly Notices of the Royal Astronomical Society, the researchers’ “simulated spectrum” demonstrates that the James Webb Space Telescope (JWST), set to be launched by NASA in 2018, will be capable of detecting oxygen and water in the atmosphere of an Earth-like planet orbiting a white dwarf after only a few hours of observation time — much more easily than for an Earth-like planet orbiting a sun-like star.

Full Story:

Gravity-Bending Find Leads To Kepler Meeting Einstein

Artist's concept. Image credit: NASA/JPL-Caltech

Artist’s concept. Image credit: NASA/JPL-Caltech

NASA’s Kepler space telescope has witnessed the effects of a dead star bending the light of its companion star. The findings are among the first detections of this phenomenon — a result of Einstein’s general theory of relativity — in binary, or double, star systems.

The dead star, called a white dwarf, is the burnt-out core of what used to be a star like our sun. It is locked in an orbiting dance with its partner, a small “red dwarf” star. While the tiny white dwarf is physically smaller than the red dwarf, it is more massive.

“This white dwarf is about the size of Earth but has the mass of the sun,” said Phil Muirhead of the California Institute of Technology, Pasadena, lead author of the findings to be published April 20 in the Astrophysical Journal. “It’s so hefty that the red dwarf, though larger in physical size, is circling around the white dwarf.”

Muirhead and his colleagues regularly use public Kepler data to search for and confirm planets around smaller stars, the red dwarfs, also known as M dwarfs. “We saw what appeared to be huge dips in the light from the star, and suspected it was from a giant planet, roughly the size of Jupiter, passing in front,” said Muirhead.

Full Story:

How White Dwarfs Mimic Black Holes

January 3, 2013 Leave a comment

The Southampton Physics and Astronomy team are part of a global collaboration – with colleagues in Taiwan, South Africa, Poland, Australia and Italy – that has revealed that bright X-ray flares in nearby galaxies, once assumed to indicate the presence of black holes, can in fact be produced by white dwarfs.

They made the discovery by detecting a dramatic, short-lived X-ray flare that was picked up by an X-ray telescope on the International Space Station.

Using optical telescopes in South Africa and Chile, the Southampton astronomers showed that the flare, called XRF111111 as it happened on 11 November, 2011, was located in the Small Magellanic Cloud. These Magellanic Clouds are between 160,000 and 200,000 light years away and are the nearest satellite galaxies to the Milky Way. They are visible to the naked eye from the Southern Hemisphere.

The flare from XRF111111 was so luminous that astronomers initially thought it was likely to be a black hole producing X-rays but further research by Phil and his team revealed that its X-ray temperature was so low that it had to be a white dwarf instead.

Full Story:

Can Life Emerge On Planets Around Cooling Stars?

November 28, 2012 Leave a comment

Astronomers find planets in strange places and wonder if they might support life. One such place would be in orbit around a white or brown dwarf. While neither is a star like the sun, both glow and so could be orbited by planets with the right ingredients for life.

No terrestrial, or Earth-like planets have yet been confirmed orbiting white or brown dwarfs, but there is no reason to assume they don’t exist. However, new research by Rory Barnes of the University of Washington and René Heller of Germany’s Leibniz Institute for Astrophysics Potsdam hints that planets orbiting white or brown dwarfs will prove poor candidates for life.

White dwarfs are the hot cores of dead stars and brown dwarfs are failed stars, objects not massive enough to start nuclear burning as the sun does. In theory, both can be bright enough to theoretically support a habitable zone — that swath of space just right for an orbiting planet’s surface water to be in liquid form, thus giving life a chance.

White and brown dwarfs share a common characteristic that sets them apart from normal stars like the sun: They slowly cool and become less luminous over time. And as they cool, their habitable zones gradually shrink inward. Thus, a planet that is found in the center of the habitable zone today must previously have spent time near the zone’s deadly inner edge.

Full Story: