Archive

Posts Tagged ‘WISE (Wide-field Infrared Survey Explorer)’

NASA’s WISE Spacecraft Discovers Most Luminous Galaxy In Universe

May 21, 2015 1 comment

Artist's concept. Image credit: N/A

Artist’s concept. Image credit: N/A

A remote galaxy shining with the light of more than 300 trillion suns has been discovered using data from NASA’s Wide-field Infrared Survey Explorer (WISE). The galaxy is the most luminous galaxy found to date and belongs to a new class of objects recently discovered by WISE — extremely luminous infrared galaxies, or ELIRGs.

“We are looking at a very intense phase of galaxy evolution,” said Chao-Wei Tsai of NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, lead author of a new report appearing in the May 22 issue of The Astrophysical Journal. “This dazzling light may be from the main growth spurt of the galaxy’s black hole.

The brilliant galaxy, known as WISE J224607.57-052635.0, may have a behemoth black hole at its belly, gorging itself on gas. Supermassive black holes draw gas and matter into a disk around them, heating the disk to roaring temperatures of millions of degrees and blasting out high-energy, visible, ultraviolet, and X-ray light. The light is blocked by surrounding cocoons of dust. As the dust heats up, it radiates infrared light.

Link To Full Story

Advertisements

NASA’s WISE Survey Finds Thousands Of New Stars, But No ‘Planet X’

March 8, 2014 1 comment

Image credit: DSS/NASA/JPL-Caltech

Image credit: DSS/NASA/JPL-Caltech

After searching hundreds of millions of objects across our sky, NASA’s Wide-Field Infrared Survey Explorer (WISE) has turned up no evidence of the hypothesized celestial body in our solar system commonly dubbed “Planet X.”

Researchers previously had theorized about the existence of this large, but unseen celestial body, suspected to lie somewhere beyond the orbit of Pluto. In addition to “Planet X,” the body had garnered other nicknames, including “Nemesis” and “Tyche.”

This recent study, which involved an examination of WISE data covering the entire sky in infrared light, found no object the size of Saturn or larger exists out to a distance of 10,000 astronomical units (au), and no object larger than Jupiter exists out to 26,000 au. One astronomical unit equals 93 million miles. Earth is 1 au, and Pluto about 40 au, from the sun.

“The outer solar system probably does not contain a large gas giant planet, or a small, companion star,” said Kevin Luhman of the Center for Exoplanets and Habitable Worlds at Penn State University, University Park, Pa., author of a paper in the Astrophysical Journal describing the results.

Link To Full Story

Recently Reactivated NASA Spacecraft Spots Its First New Asteroid

January 7, 2014 Leave a comment

NASA’s Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) spacecraft has spotted a never-before-seen asteroid — its first such discovery since coming out of hibernation last year.

NEOWISE originally was called the Wide-field Infrared Survey Explorer (WISE), which had made the most comprehensive survey to date of asteroids and comets. The spacecraft was shut down in 2011 after its primary mission was completed. But in September 2013, it was reactivated, renamed and given a new mission, which is to assist NASA’s efforts to identify the population of potentially hazardous near-Earth objects (NEOs). NEOWISE also can assist in characterizing previously detected asteroids that could be considered potential targets for future exploration missions

NEOWISE’s first discovery of its renewed mission came on Dec. 29 — a near-Earth asteroid designated 2013 YP139. The mission’s sophisticated software picked out the moving object against a background of stationary stars. As NEOWISE circled Earth scanning the sky, it observed the asteroid several times over half a day before the object moved beyond its view. Researchers at the University of Arizona used the Spacewatch telescope at the Kitt Peak National Observatory southwest of Tucson to confirm the discovery. Peter Birtwhistle, an amateur astronomer at the Great Shefford Observatory in West Berkshire, England, also contributed follow-up observations. NASA expects 2013 YP139 will be the first of hundreds of asteroid discoveries for NEOWISE.

Link To Full Story
Link To Another Story

Massive Black Hole Duo: Possible Sighting By NASA’s WISE

December 4, 2013 Leave a comment

Artist's conception. Image credit: NASA

Artist’s conception. Image credit: NASA

Astronomers have spotted what appear to be two supermassive black holes at the heart of a remote galaxy, circling each other like dance partners. The incredibly rare sighting was made with the help of NASA’s Wide-field Infrared Survey Explorer, or WISE.

Follow-up observations with the Australian Telescope Compact Array near Narrabri, Australia, and the Gemini South telescope in Chile, revealed unusual features in the galaxy, including a lumpy jet thought to be the result of one black hole causing the jet of the other to sway.

“We think the jet of one black hole is being wiggled by the other, like a dance with ribbons,” said Chao-Wei Tsai of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., who is lead author of a paper on the findings appearing in the Dec. 10 issue of Astrophysical Journal. “If so, it is likely the two black holes are fairly close and gravitationally entwined.”

The findings could teach astronomers more about how supermassive black holes grow by merging with each other.

Link To Full Story

Coldest Brown Dwarfs Blur Lines Between Stars And Planets

September 6, 2013 Leave a comment

Astronomers are constantly on the hunt for ever-colder star-like bodies, and two years ago a new class of objects was discovered by researchers using NASA’s WISE space telescope. However, until now no one has known exactly how cool their surfaces really are – some evidence suggested they could be room temperature.

A new study shows that while these brown dwarfs, sometimes called failed stars, are indeed the coldest known free-floating celestial bodies, they are warmer than previously thought with temperatures about 250-350 degrees Fahrenheit.

To reach such low surface temperatures after cooling for billions of years means that these objects can only have about 5 to 20 times the mass of Jupiter. Unlike the Sun, these objects’ only source of energy is from their gravitational contraction, which depends directly on their mass.

“If one of these objects was found orbiting a star, there is a good chance that it would be called a planet,” says Trent Dupuy, a Hubble Fellow at the Harvard-Smithsonian Center for Astrophysics. But because they probably formed on their own and not in a proto-planetary disk, astronomers still call these objects brown dwarfs even if they are “planetary mass.”

Full Story: http://www.cfa.harvard.edu/news/2013/pr201323.html

Monster Galaxies Lose Their Appetite With Age


Galaxy clusters. Image credit: NASA/JPL-Caltech/SDSS/NOAO

Galaxy clusters. Image credit: NASA/JPL-Caltech/SDSS/NOAO

Our universe is filled with gobs of galaxies, bound together by gravity into larger families called clusters. Lying at the heart of most clusters is a monster galaxy thought to grow in size by merging with neighboring galaxies, a process astronomers call galactic cannibalism.

New research from NASA’s Spitzer Space Telescope and Wide-field Infrared Survey Explorer (WISE) is showing that, contrary to previous theories, these gargantuan galaxies appear to slow their growth over time, feeding less and less off neighboring galaxies.

“We’ve found that these massive galaxies may have started a diet in the last 5 billion years, and therefore have not gained much weight lately,” said Yen-Ting Lin of the Academia Sinica in Taipei, Taiwan, lead author of a study published in the Astrophysical Journal.

Full Story: http://www.jpl.nasa.gov/news/news.php?release=2013-239

NASA’s WISE Mission Finds Lost Asteroid Family Members


Data from NASA’s Wide-field Infrared Survey Explorer (WISE) have led to a new and improved family tree for asteroids in the main belt between Mars and Jupiter.

Astronomers used millions of infrared snapshots from the asteroid-hunting portion of the WISE all-sky survey, called NEOWISE, to identify 28 new asteroid families. The snapshots also helped place thousands of previously hidden and uncategorized asteroids into families for the first time. The findings are a critical step in understanding the origins of asteroid families, and the collisions thought to have created these rocky clans.

“NEOWISE has given us the data for a much more detailed look at the evolution of asteroids throughout the solar system,” said Lindley Johnson, the program executive for the Near-Earth Object Observation Program at NASA Headquarters in Washington. “This will help us trace the NEOs back to their sources and understand how some of them have migrated to orbits hazardous to the Earth.”

Full Story: http://www.jpl.nasa.gov/news/news.php?release=2013-179