Archive

Posts Tagged ‘xmm newton’

SGR 1745-2900: Magnetar Near Supermassive Black Hole Delivers Surprises


Credit: NASA/CXC/INAF/F.Coti Zelati et al

Credit: NASA/CXC/INAF/F.Coti Zelati et al

In 2013, astronomers announced they had discovered a magnetar exceptionally close to the supermassive black hole at the center of the Milky Way using a suite of space-borne telescopes including NASA’s Chandra X-ray Observatory.

Magnetars are dense, collapsed stars (called “neutron stars”) that possess enormously powerful magnetic fields. At a distance that could be as small as 0.3 light years (or about 2 trillion miles) from the 4-million-solar mass black hole in the center of our Milky Way galaxy, the magnetar is by far the closest neutron star to a supermassive black hole ever discovered and is likely in its gravitational grip.

A new study uses long-term monitoring observations to reveal that the amount of X-rays from SGR 1745-2900 is dropping more slowly than other previously observed magnetars, and its surface is hotter than expected.

Link To Full Story

Advertisements

NASA, ESA Telescopes Give Shape To Furious Black Hole Winds

February 19, 2015 Leave a comment

Image credit: NASA/JPL-Caltech

Image credit: NASA/JPL-Caltech

NASA’s Nuclear Spectroscopic Telescope Array (NuSTAR) and ESA’s (European Space Agency) XMM-Newton telescope are showing that fierce winds from a supermassive black hole blow outward in all directions — a phenomenon that had been suspected, but difficult to prove until now.

This discovery has given astronomers their first opportunity to measure the strength of these ultra-fast winds and prove they are powerful enough to inhibit the host galaxy’s ability to make new stars

“We know black holes in the centers of galaxies can feed on matter, and this process can produce winds. This is thought to regulate the growth of the galaxies,” said Fiona Harrison of the California Institute of Technology (Caltech) in Pasadena, California. Harrison is the principal investigator of NuSTAR and a co-author on a new paper about these results appearing in the journal Science. “Knowing the speed, shape and size of the winds, we can now figure out how powerful they are.”

Link To Full Story

Link To Another Story

NASA’s Chandra Weighs Most Massive Galaxy Cluster In Distant Universe

December 18, 2014 Leave a comment

Credit: X-ray: NASA/CXC/INAF/P.Tozzi, et al; Optical: NAOJ/Subaru and ESO/VLT; Infrared: ESA/Herschel

Credit: X-ray: NASA/CXC/INAF/P.Tozzi, et al; Optical: NAOJ/Subaru and ESO/VLT; Infrared: ESA/Herschel

Using NASA’s Chandra X-ray Observatory, astronomers have made the first determination of the mass and other properties of a very young, distant galaxy cluster.

The Chandra study shows that the galaxy cluster, seen at the comparatively young age of about 800 million years, is the most massive known cluster with that age or younger. As the largest gravitationally- bound structures known, galaxy clusters can act as crucial gauges for how the Universe itself has evolved over time.

The galaxy cluster was originally discovered using ESA’s XMM-Newton observatory and is located about 9.6 billion light years from Earth. Astronomers used X-ray data from Chandra that, when combined with scientific models, provides an accurate weight of the cluster, which comes in at a whopping 400 trillion times the mass of the Sun. Scientists believe the cluster formed about 3.3 billion years after the Big Bang.

Link To Full Story

Mysterious X-Ray Signal Intrigues Astronomers


Credit: X-ray: NASA/CXC/SAO/E.Bulbul, et al.

Credit: X-ray: NASA/CXC/SAO/E.Bulbul, et al.

A mysterious X-ray signal has been found in a detailed study of galaxy clusters using NASA’s Chandra X-ray Observatory and ESA’s XMM-Newton. One intriguing possibility is that the X-rays are produced by the decay of sterile neutrinos, a type of particle that has been proposed as a candidate for dark matter.

While holding exciting potential, these results must be confirmed with additional data to rule out other explanations and determine whether it is plausible that dark matter has been observed.

Astronomers think dark matter constitutes 85% of the matter in the Universe, but does not emit or absorb light like “normal” matter such as protons, neutrons and electrons that make up the familiar elements observed in planets, stars, and galaxies. Because of this, scientists must use indirect methods to search for clues about dark matter.

The latest results from Chandra and XMM-Newton consist of an unidentified X-ray emission line, that is, a spike of intensity at a very specific wavelength of X-ray light. Astronomers detected this emission line in the Perseus galaxy cluster using both Chandra and XMM-Newton. They also found the line in a combined study of 73 other galaxy clusters with XMM-Newton.

Link To Full Story

Coma Cluster: Clues To The Growth Of The Colossus In Coma

September 19, 2013 Leave a comment

Credit: X-ray: NASA / CXC / MPE / J.Sanders et al, Optical: SDSS

Credit: X-ray: NASA / CXC / MPE / J.Sanders et al, Optical: SDSS

A team of astronomers has discovered enormous arms of hot gas in the Coma cluster of galaxies by using NASA’s Chandra X-ray Observatory and ESA’s XMM-Newton. These features, which span at least half a million light years, provide insight into how the Coma cluster has grown through mergers of smaller groups and clusters of galaxies to become one of the largest structures in the Universe held together by gravity.

A new composite image, with Chandra data in pink and optical data from the Sloan Digital Sky Survey appearing in white and blue, features these spectacular arms (mouse over the image for their location). In this image, the Chandra data have been processed so extra detail can be seen.

The X-ray emission is from multimillion-degree gas and the optical data shows galaxies in the Coma Cluster, which contain only about 1/6 the mass in hot gas. Only the brightest X-ray emission is shown here, to emphasize the arms, but the hot gas is present over the entire field of view.

Link To Full Story.

Massive Stellar Winds Are Made Of Tiny Pieces

February 12, 2013 Leave a comment

ESA’s XMM-Newton space observatory has completed the most detailed study ever of the fierce wind from a giant star, showing for the first time that it is not a uniform breeze but is fragmented into hundreds of thousands of pieces.

Massive stars are relatively rare, but play a very important role in recycling materials in the Universe. They burn their nuclear fuel much more rapidly than stars like the Sun, living only for millions of years before exploding as a supernova and returning most of their matter to space.

But even during their brief lives, they lose a significant fraction of their mass through fierce winds of gas driven off their surfaces by the intense light emitted from the star. The winds from massive stars are at least a hundred million times stronger than the solar wind emitted by our own Sun and can significantly shape their surrounding environment.

Full Story: http://www.esa.int/Our_Activities/Space_Science/Massive_stellar_winds_are_made_of_tiny_pieces

X-Raying Stellar Winds in a High-Speed Collision

October 12, 2012 Leave a comment

Two massive stars racing in orbit around each other have had their colliding stellar winds X-rayed for the first time, thanks to the combined efforts of ESA’s XMM-Newton and NASA’s Swift space telescopes.

Stellar winds, pushed away from a massive star’s surface by its intense light, can have a profound influence on their environment.

Now, XMM-Newton and Swift have found a ‘Rosetta stone’ for such winds in a binary system known as Cyg OB2 #9, located in the Cygnus star-forming region, where the winds from two massive stars orbiting around each other collide at high speeds.

“This is the first time that we have found clear evidence for colliding winds in this system,” says Yael Nazé of the Université de Liège, Belgium, and lead author of the paper describing the results reported in Astronomy & Astrophysics.

Full Story: http://www.esa.int/esaSC/SEM3H93S18H_index_0.html
Also: http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=50904