NOAO: A Sharp Eye On Southern Binary Stars


Unlike our sun, with its retinue of orbiting planets, many stars in the sky orbit around a second star. These binary stars, with orbital periods ranging from days to centuries, have long been the primary tool for measuring basic quantities like the star’s mass. While masses of normal stars are now well determined, some binaries present special interest because their stars are unusual (e.g. very young) or because they may contain planets, gas clouds, or other stars.

Now, astronomers at the Cerro Tololo Inter-American Observatory (CTIO) and at the US Naval Observatory (USNO) are making use of the latest technology, speckle imaging, to measure the separation of close binary stars. By observing them over a period of years, their obits have been determined with exquisite precision.

Using the new speckle camera at the 4.1-m Southern Astrophysical Research Telescope (SOAR) in Chile with its novel electron-multiplication CCD detector, the team is able to measure the angular separation of stars down to 25 milli arcseconds: this is equivalent to measuring the size of a quarter atop the Empire State building in New York – from Washington, DC. This is over 2000 times better than the human eye can resolve. As Dr. Andrei Tokovinin, the lead author on the paper, said: “This camera surpasses adaptive-optics instruments at the 8-m telescopes, which work in the infrared and can only resolve binaries wider than 50 milli arcseconds.“

Link To Full Story

Meteorites Yield Clues To Red Planet’s Early Atmosphere


Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published April 17 in the journal Nature, shows that the atmospheres of Mars and Earth diverged in important ways very early in the 4.6 billion year evolution of our solar system.

Heather Franz, a former University of Maryland research associate who now works on the Curiosity rover science team at the NASA Goddard Space Flight Center, led the study with James Farquhar, co-author and UMD geology professor. The researchers measured the sulfur composition of 40 Mars meteorites—a much larger number than in previous analyses. Of more than 60,000 meteorites found on Earth, only 69 are believed to be pieces of rocks blasted off the Martian surface.

The meteorites are igneous rocks that formed on Mars, were ejected into space when an asteroid or comet slammed into the red planet, and landed on Earth. The oldest meteorite in the study is about 4.1 billion years old, formed when our solar system was in its infancy. The youngest are between 200 million and 500 million years old.

Link To Full Story

Press Release: Computers Beat Brainpower In Counting Stars


A team of University of Sydney astronomers has developed a new way to automatically classify huge numbers of astronomical objects, and to discover new, exotic ones almost as soon as they happen.

Massive torrents of raw data are now collected by telescopes on a daily basis creating an urgent need to massively accelerate the reliable classification of millions of stars and galaxies, and to quickly highlight objects that might be new discoveries or that have unusual properties.

“Next generation telescopes like the Square Kilometre Array will produce enough raw data to fill up 15 million iPods every day,” said Kitty Lo, lead author of the research published in The Astrophysical Journal.

“It will be too much for humans to sift through, and this is where computer classification comes in,” said Ms Lo.

Link To Full Story And Video

The Laws That Determine How Dust Affects The Light That Reaches Us From The Stars Are Being Rewritten


Credit: NASA, N. Walborn, J. Maíz-Apellániz and R. Barbá

Credit: NASA, N. Walborn, J. Maíz-Apellániz and R. Barbá

If the space traversed by light to reach our eyes were empty, knowing the properties of a star could be as simple as taking a picture of it and measuring its glow (something known as photometry). But the interstellar environment is strewn with dust that absorbs and scatters light, making objects look less luminous and redder—or colder—than they actually are. A recently published paper makes it possible, at last, to correct this distorting effect adequately.

“In the range of wavelengths that our eyes perceive -the visible light- of every billion photons that a star in the centre of the Milky Way emits, only one reaches our eyes,” says Jesús Maíz Apellániz, researcher at the Institute of Astrophysics of Andalusia (IAA-CSIC) in charge of the publication. “This is an extreme example of how dust affects the light of stars, a phenomenon that takes place in every single environment, albeit with less intensity.”

The effect of dust, then, must be reckoned with in any astronomical observation before trying to extract the characteristics of an object. Maíz Apellániz, together with an international team of collaborators, showed that the laws used since 1989 to calculate the extinction of light produced by dust had serious limitations and yielded, among others, erroneous temperature estimates for stars. So they took it upon themselves to change those laws.

Link To Full Story

Beauty From Chaos


Copyright ESA/DLR/FU Berlin

Copyright ESA/DLR/FU Berlin

Beautiful streamlined islands and narrow gorges were carved by fast-flowing water pounding through a small, plateau region near the southeastern margin of the vast Vallis Marineris canyon system.

Images captured on 7 December 2013 by ESA’s Mars Express show the central portion of Osuga Valles, which has a total length of 164 km. It is some 170 km south of Eos Chaos, which lies in the far eastern section of Valles Marineris.

Osuga Valles is an outflow channel that emanates from a region of chaotic terrain at the edge of Eos Chaos to the west (top in the main images). Such landscape is dominated by randomly oriented and heavily eroded blocks of terrain. Another example is seen at the bottom of this scene, filling the 2.5 km-deep depression into which Osuga Valles empties.

Link To Full Story

Faraway Moon Or Faint Star? Possible Exomoon Found


Titan, Europa, Io and Phobos are just a few members of our solar system’s pantheon of moons. Are there are other moons out there, orbiting planets beyond our sun?

NASA-funded researchers have spotted the first signs of an “exomoon,” and though they say it’s impossible to confirm its presence, the finding is a tantalizing first step toward locating others. The discovery was made by watching a chance encounter of objects in our galaxy, which can be witnessed only once.

“We won’t have a chance to observe the exomoon candidate again,” said David Bennett of the University of Notre Dame, Ind., lead author of a new paper on the findings appearing in the Astrophysical Journal. “But we can expect more unexpected finds like this.”

The international study is led by the joint Japan-New Zealand-American Microlensing Observations in Astrophysics (MOA) and the Probing Lensing Anomalies NETwork (PLANET) programs, using telescopes in New Zealand and Tasmania. Their technique, called gravitational microlensing, takes advantage of chance alignments between stars. When a foreground star passes between us and a more distant star, the closer star can act like a magnifying glass to focus and brighten the light of the more distant one. These brightening events usually last about a month.

Link To Full Story

Supernova Cleans Up Its Surroundings


Credit: X-ray: NASA/CXC/Morehead State Univ / T.Pannuti et al.; Optical: DSS; Infrared: NASA/JPL-Caltech; Radio: NRAO/VLA / Argentinian Institute of Radioastronomy / G.Dubner

Credit: X-ray: NASA/CXC/Morehead State Univ / T.Pannuti et al.; Optical: DSS; Infrared: NASA/JPL-Caltech; Radio: NRAO/VLA / Argentinian Institute of Radioastronomy / G.Dubner

Supernovas are the spectacular ends to the lives of many massive stars. These explosions, which occur on average twice a century in the Milky Way, can produce enormous amounts of energy and be as bright as an entire galaxy. These events are also important because the remains of the shattered star are hurled into space. As this debris field – called a supernova remnant – expands, it carries the material it encounters along with it.

Astronomers have identified a supernova remnant that has several unusual properties. First, they found that this supernova remnant – known as G352.7-0.1 (or, G352 for short) – has swept up a remarkable amount of material, equivalent to about 45 times the mass of the Sun.

Another atypical trait of G352 is that it has a very different shape in radio data compared to that in X-rays. Most of the radio emission is shaped like an ellipse, contrasting with the X-ray emission that fills in the center of the radio ellipse.

A recent study suggests that, surprisingly, the X-ray emission in G352 is dominated by the hotter (about 30 million degrees Celsius) debris from the explosion, rather than cooler (about 2 million degrees) emission from surrounding material that has been swept up by the expanding shock wave. This is curious because astronomers estimate that G352 exploded about 2,200 years ago, and supernova remnants of this age usually produce X-rays that are dominated by swept-up material. Scientists are still trying to come up with an explanation for this behavior.

Link To Full Story

Follow

Get every new post delivered to your Inbox.

Join 377 other followers